1
|
Qiao M, Wang Y, Cai Z, Du B, Wang P, Luan C, Chen W, Noh HR, Kim K. Double-Electromagnetically-Induced-Transparency Ground-State Cooling of Stationary Two-Dimensional Ion Crystals. PHYSICAL REVIEW LETTERS 2021; 126:023604. [PMID: 33512231 DOI: 10.1103/physrevlett.126.023604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
We theoretically and experimentally investigate double-electromagnetically-induced transparency (double-EIT) cooling of two-dimensional ion crystals confined in a Paul trap. The double-EIT ground-state cooling is observed for ^{171}Yb^{+} ions with a clock state, for which EIT cooling has not been realized like many other ions with a simple Λ scheme. A cooling rate of n[over ¯][over ˙]=34(±1.8) ms^{-1} and a cooling limit of n[over ¯]=0.06(±0.059) are observed for a single ion. The measured cooling rate and limit are consistent with theoretical predictions. We apply double-EIT cooling to the transverse modes of two-dimensional (2D) crystals with up to 12 ions. In our 2D crystals, the micromotion and the transverse mode directions are perpendicular, which makes them decoupled. Therefore, the cooling on transverse modes is not disturbed by micromotion, which is confirmed in our experiment. For the center of mass mode of a 12-ion crystal, we observe a cooling rate and a cooling limit that are consistent with those of a single ion, including heating rates proportional to the number of ions. This method can be extended to other hyperfine qubits, and near ground-state cooling of stationary 2D crystals with large numbers of ions may advance the field of quantum information sciences.
Collapse
Affiliation(s)
- Mu Qiao
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ye Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Zhengyang Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Botao Du
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Pengfei Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chunyang Luan
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wentao Chen
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Heung-Ryoul Noh
- Department of Physics, Chonnam National University, Gwangju 61186, Korea
| | - Kihwan Kim
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Mei F, Guo Q, Yu YF, Xiao L, Zhu SL, Jia S. Digital Simulation of Topological Matter on Programmable Quantum Processors. PHYSICAL REVIEW LETTERS 2020; 125:160503. [PMID: 33124873 DOI: 10.1103/physrevlett.125.160503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Simulating the topological phases of matter in synthetic quantum simulators is a topic of considerable interest. Given the universality of digital quantum simulators, the prospect of digitally simulating exotic topological phases is greatly enhanced. However, it is still an open question how to realize the digital quantum simulation of topological phases of matter. Here, using common single- and two-qubit elementary quantum gates, we propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors where spin-orbital coupling and related topological matter can be digitally simulated. In particular, a low-depth topological quantum circuit is performed on both the IBM and Rigetti quantum processors. In the experiments, we not only observe but also distinguish the 0 and π energy topological edge states by measuring the qubit excitation distribution at the output of the circuits.
Collapse
Affiliation(s)
- Feng Mei
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihao Guo
- School of Science, Xian Jiaotong University, Xian 710049, Shaanxi, China
| | - Ya-Fei Yu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shi-Liang Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, Frontier Research Institute for Physics and SPTE, South China Normal University, Guangzhou 510006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Macridin A, Spentzouris P, Amundson J, Harnik R. Electron-Phonon Systems on a Universal Quantum Computer. PHYSICAL REVIEW LETTERS 2018; 121:110504. [PMID: 30265100 DOI: 10.1103/physrevlett.121.110504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 06/08/2023]
Abstract
We present an algorithm that extends existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to include bosons in general and phonons in particular. We introduce a qubit representation for the low-energy subspace of phonons which allows an efficient simulation of the evolution operator of the electron-phonon systems. As a consequence of the Nyquist-Shannon sampling theorem, the phonons are represented with exponential accuracy on a discretized Hilbert space with a size that increases linearly with the cutoff of the maximum phonon number. The additional number of qubits required by the presence of phonons scales linearly with the size of the system. The additional circuit depth is constant for systems with finite-range electron-phonon and phonon-phonon interactions and linear for long-range electron-phonon interactions. Our algorithm for a Holstein polaron problem was implemented on an Atos quantum learning machine quantum simulator employing the quantum phase estimation method. The energy and the phonon number distribution of the polaron state agree with exact diagonalization results for weak, intermediate, and strong electron-phonon coupling regimes.
Collapse
Affiliation(s)
| | | | | | - Roni Harnik
- Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA
| |
Collapse
|
4
|
Płodzień M, Sowiński T, Kokkelmans S. Simulating polaron biophysics with Rydberg atoms. Sci Rep 2018; 8:9247. [PMID: 29915263 PMCID: PMC6006159 DOI: 10.1038/s41598-018-27232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
Transport of excitations along proteins can be formulated in a quantum physics context, based on the periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding equations are very challenging to obtain on classical computers. Approximate solutions based on the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the protein, however, experimentally these solutions have never been directly observed. Here we propose an alternative study of biophysical transport phenomena based on a quantum simulator composed of a chain of ultracold dressed Rydberg atoms, which allows for a direct observation of the Davydov phenomena. We show that there is an experimentally accessible range of parameters where the system directly mimics the Davydov equations and their solutions. Moreover, we show that such a quantum simulator has access to the regime in between the small and large polaron regimes, which cannot be described perturbatively.
Collapse
Affiliation(s)
- Marcin Płodzień
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands. .,Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland.
| | - Tomasz Sowiński
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland
| | - Servaas Kokkelmans
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
5
|
Zhang X, Zhang K, Shen Y, Zhang S, Zhang JN, Yung MH, Casanova J, Pedernales JS, Lamata L, Solano E, Kim K. Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion. Nat Commun 2018; 9:195. [PMID: 29335446 PMCID: PMC5768889 DOI: 10.1038/s41467-017-02507-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Quantum field theories describe a variety of fundamental phenomena in physics. However, their study often involves cumbersome numerical simulations. Quantum simulators, on the other hand, may outperform classical computational capacities due to their potential scalability. Here we report an experimental realization of a quantum simulation of fermion-antifermion scattering mediated by bosonic modes, using a multilevel trapped ion, which is a simplified model of fermion scattering in both perturbative and non-perturbative quantum electrodynamics. The simulated model exhibits prototypical features in quantum field theory including particle pair creation and annihilation, as well as self-energy interactions. These are experimentally observed by manipulating four internal levels of a 171Yb+ trapped ion, where we encode the fermionic modes, and two motional degrees of freedom that simulate the bosonic modes. Our experiment establishes an avenue towards the efficient implementation of field modes, which may prove useful in studies of quantum field theories including non-perturbative regimes.
Collapse
Affiliation(s)
- Xiang Zhang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.,Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Kuan Zhang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangchao Shen
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuaining Zhang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing-Ning Zhang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.
| | - Man-Hong Yung
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.,Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology of China, Shenzhen, 518055, China.,Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, 518055, China
| | - Jorge Casanova
- Institut für Theoretische Physik and IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Julen S Pedernales
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080, Bilbao, Spain
| | - Lucas Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080, Bilbao, Spain
| | - Enrique Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080, Bilbao, Spain.,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.,Department of Physics, Shanghai University, 200444, Shanghai, China
| | - Kihwan Kim
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Shen Y, Lu Y, Zhang K, Zhang J, Zhang S, Huh J, Kim K. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. Chem Sci 2017; 9:836-840. [PMID: 29629150 PMCID: PMC5873044 DOI: 10.1039/c7sc04602b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO2 as an example.
Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
Collapse
Affiliation(s)
- Yangchao Shen
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| | - Yao Lu
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| | - Kuan Zhang
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| | - Junhua Zhang
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| | - Shuaining Zhang
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| | - Joonsuk Huh
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea .
| | - Kihwan Kim
- Center for Quantum Information , Institute for Interdisciplinary Information Sciences , Tsinghua University , Beijing 100084 , P. R. China .
| |
Collapse
|
7
|
A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions. Sci Rep 2017; 7:46197. [PMID: 28401945 PMCID: PMC5388870 DOI: 10.1038/srep46197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10-5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.
Collapse
|
8
|
Lamata L. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits. Sci Rep 2017; 7:43768. [PMID: 28256559 PMCID: PMC5335609 DOI: 10.1038/srep43768] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/27/2017] [Indexed: 11/19/2022] Open
Abstract
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.
Collapse
Affiliation(s)
- Lucas Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| |
Collapse
|
9
|
Digital-Analog Quantum Simulation of Spin Models in Trapped Ions. Sci Rep 2016; 6:30534. [PMID: 27470970 PMCID: PMC4965796 DOI: 10.1038/srep30534] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
We propose a method to simulate spin models in trapped ions using a digital-analog approach, consisting in a suitable gate decomposition in terms of analog blocks and digital steps. In this way, we show that the quantum dynamics of an enhanced variety of spin models could be implemented with substantially less number of gates than a fully digital approach. Typically, analog blocks are built of multipartite dynamics providing the complexity of the simulated model, while the digital steps are local operations bringing versatility to it. Finally, we describe a possible experimental implementation in trapped-ion technologies.
Collapse
|
10
|
Mezzacapo A, Rico E, Sabín C, Egusquiza IL, Lamata L, Solano E. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. PHYSICAL REVIEW LETTERS 2015; 115:240502. [PMID: 26705616 DOI: 10.1103/physrevlett.115.240502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 06/05/2023]
Abstract
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Collapse
Affiliation(s)
- A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - E Rico
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - C Sabín
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - I L Egusquiza
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Mezzacapo A, Sanz M, Lamata L, Egusquiza IL, Succi S, Solano E. Quantum Simulator for Transport Phenomena in Fluid Flows. Sci Rep 2015; 5:13153. [PMID: 26278968 PMCID: PMC4538376 DOI: 10.1038/srep13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/21/2015] [Indexed: 12/01/2022] Open
Abstract
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Collapse
Affiliation(s)
- A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - M Sanz
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - I L Egusquiza
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - S Succi
- Istituto per le Applicazioni del Calcolo "M. Picone" CNR, I-00185 Rome, Italy.,Institute for Applied Computational Science, Harvard University, Oxford Street, 33, 02138 Cambridge, USA
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
12
|
García-Álvarez L, Casanova J, Mezzacapo A, Egusquiza IL, Lamata L, Romero G, Solano E. Fermion-fermion scattering in quantum field theory with superconducting circuits. PHYSICAL REVIEW LETTERS 2015; 114:070502. [PMID: 25763944 DOI: 10.1103/physrevlett.114.070502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Indexed: 06/04/2023]
Abstract
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.
Collapse
Affiliation(s)
- L García-Álvarez
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - J Casanova
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - I L Egusquiza
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - G Romero
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Mezzacapo A, Las Heras U, Pedernales JS, DiCarlo L, Solano E, Lamata L. Digital quantum Rabi and Dicke models in superconducting circuits. Sci Rep 2014; 4:7482. [PMID: 25500735 PMCID: PMC4265784 DOI: 10.1038/srep07482] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/26/2014] [Indexed: 11/09/2022] Open
Abstract
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.
Collapse
Affiliation(s)
- A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - U Las Heras
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - J S Pedernales
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - L DiCarlo
- Kavli Institute of Nanoscience, Delft University of Technology, P. O. Box 5046, 2600 GA Delft, The Netherlands
| | - E Solano
- 1] Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain [2] IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| |
Collapse
|
14
|
Mezzacapo A, Lamata L, Filipp S, Solano E. Many-body interactions with tunable-coupling transmon qubits. PHYSICAL REVIEW LETTERS 2014; 113:050501. [PMID: 25126905 DOI: 10.1103/physrevlett.113.050501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 06/03/2023]
Abstract
The efficient implementation of many-body interactions in superconducting circuits allows for the realization of multipartite entanglement and topological codes, as well as the efficient simulation of highly correlated fermionic systems. We propose the engineering of fast multiqubit interactions with tunable transmon-resonator couplings. This dynamics is obtained by the modulation of magnetic fluxes threading superconducting quantum interference device loops embedded in the transmon devices. We consider the feasibility of the proposed implementation in a realistic scenario and discuss potential applications.
Collapse
Affiliation(s)
- A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - S Filipp
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain
| |
Collapse
|
15
|
Pedernales JS, Di Candia R, Egusquiza IL, Casanova J, Solano E. Efficient quantum algorithm for computing n-time correlation functions. PHYSICAL REVIEW LETTERS 2014; 113:020505. [PMID: 25062155 DOI: 10.1103/physrevlett.113.020505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 06/03/2023]
Abstract
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Collapse
Affiliation(s)
- J S Pedernales
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - R Di Candia
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - I L Egusquiza
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - J Casanova
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain
| |
Collapse
|
16
|
Yung MH, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A, Solano E. From transistor to trapped-ion computers for quantum chemistry. Sci Rep 2014; 4:3589. [PMID: 24395054 PMCID: PMC5378044 DOI: 10.1038/srep03589] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/02/2022] Open
Abstract
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Collapse
Affiliation(s)
- M.-H. Yung
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA, 02138, USA
- These authors contributed equally to this work
| | - J. Casanova
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- These authors contributed equally to this work
| | - A. Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - J. McClean
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA, 02138, USA
| | - L. Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - A. Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA, 02138, USA
| | - E. Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain
| |
Collapse
|
17
|
Alvarez-Rodriguez U, Casanova J, Lamata L, Solano E. Quantum simulation of noncausal kinematic transformations. PHYSICAL REVIEW LETTERS 2013; 111:090503. [PMID: 24033011 DOI: 10.1103/physrevlett.111.090503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 06/02/2023]
Abstract
We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system.
Collapse
Affiliation(s)
- U Alvarez-Rodriguez
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
18
|
Herrera F, Madison KW, Krems RV, Berciu M. Investigating polaron transitions with polar molecules. PHYSICAL REVIEW LETTERS 2013; 110:223002. [PMID: 23767718 DOI: 10.1103/physrevlett.110.223002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Indexed: 06/02/2023]
Abstract
We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experiments place them in the region where one of the transitions occurs. We also propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy.
Collapse
Affiliation(s)
- Felipe Herrera
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | |
Collapse
|