1
|
Kemper AF, Yang C, Gull E. Denoising and Extension of Response Functions in the Time Domain. PHYSICAL REVIEW LETTERS 2024; 132:160403. [PMID: 38701446 DOI: 10.1103/physrevlett.132.160403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Response functions of quantum systems, such as electron Green's functions, magnetic, or charge susceptibilities, describe the response of a system to an external perturbation. They are the central objects of interest in field theories and quantum computing and measured directly in experiment. Response functions are intrinsically causal. In equilibrium and steady-state systems, they correspond to a positive spectral function in the frequency domain. Since response functions define an inner product on a Hilbert space and thereby induce a positive definite function, the properties of this function can be used to reduce noise in measured data and, in equilibrium and steady state, to construct positive definite extensions for data known on finite time intervals, which are then guaranteed to correspond to positive spectra.
Collapse
Affiliation(s)
- Alexander F Kemper
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chao Yang
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
White TG, Dai J, Riley D. Dynamic and transient processes in warm dense matter. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220223. [PMID: 37393937 PMCID: PMC10315215 DOI: 10.1098/rsta.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
In this paper, we discuss some of the key challenges in the study of time-dependent processes and non-equilibrium behaviour in warm dense matter. We outline some of the basic physics concepts that have underpinned the definition of warm dense matter as a subject area in its own right and then cover, in a selective, non-comprehensive manner, some of the current challenges, pointing along the way to topics covered by the papers presented in this volume. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Thomas G. White
- Department of Physics, University of Nevada, Reno, NV 89557, USA
| | - Jiayu Dai
- College of Science, National University of Defense Technology, Changsha 410073, People’s Republic of China
| | - David Riley
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
3
|
Moldabekov ZA, Lokamani M, Vorberger J, Cangi A, Dornheim T. Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons. J Chem Phys 2023; 158:094105. [PMID: 36889956 DOI: 10.1063/5.0135729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We assess the accuracy of common hybrid exchange-correlation (XC) functionals (PBE0, PBE0-1/3, HSE06, HSE03, and B3LYP) within the Kohn-Sham density functional theory for the harmonically perturbed electron gas at parameters relevant for the challenging conditions of the warm dense matter. Generated by laser-induced compression and heating in the laboratory, the warm dense matter is a state of matter that also occurs in white dwarfs and planetary interiors. We consider both weak and strong degrees of density inhomogeneity induced by the external field at various wavenumbers. We perform an error analysis by comparing with the exact quantum Monte Carlo results. In the case of a weak perturbation, we report the static linear density response function and the static XC kernel at a metallic density for both the degenerate ground-state limit and for partial degeneracy at the electronic Fermi temperature. Overall, we observe an improvement in the density response when the PBE0, PBE0-1/3, HSE06, and HSE03 functionals are used, compared with the previously reported results for the PBE, PBEsol, local-density approximation, and AM05 functionals; B3LYP, on the other hand, does not perform well for the considered system. Additionally, the PBE0, PBE0-1/3, HSE06, and HSE03 functionals are more accurate for the density response properties than SCAN in the regime of partial degeneracy.
Collapse
Affiliation(s)
- Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Mani Lokamani
- Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Insitute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| |
Collapse
|
4
|
Dynamical Density of Two-Dimensional Dusty Plasmas. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Shahzad A, Manzoor A, Wang W, Mahboob A, Kashif M, He MG. Dynamic Characteristics of Strongly Coupled Nonideal Plasmas. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Lv M, Li K, Wang C, Hu R, Zhao Y, Dai J. Bound electron screening effect on ion-ion potential of warm and hot dense matter. Phys Rev E 2021; 103:L051203. [PMID: 34134302 DOI: 10.1103/physreve.103.l051203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
The effects of bound electron screening in warm and hot dense matter are investigated analytically and a theoretical description of screened short-range repulsion is given meanwhile. An empirical ion-ion potential including the classic charge screening and chemical bond attraction at various temperatures and densities is proposed. By solving hypernetted chain equations and comparing the obtained radial distribution function (RDF) with ab initio simulations, the proposed ion-ion potential is found to be promising over a wide range of temperatures and densities for warm dense aluminum and iron. The elastic scattering amplitude and the x-ray absorption near the edge structure of warm dense aluminum calculated from the obtained RDF are in good agreement with experiment results.
Collapse
Affiliation(s)
- Meng Lv
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ke Li
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chuan Wang
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ronghao Hu
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yang Zhao
- Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900, People's Republic of China
| | - Jiayu Dai
- Department of Physics, College of Science, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| |
Collapse
|
7
|
Dornheim T, Vorberger J. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Phys Rev E 2020; 102:063301. [PMID: 33466040 DOI: 10.1103/physreve.102.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
We systematically investigate finite-size effects in the dynamic structure factor S(q,ω) of the uniform electron gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time density-density correlation function F(q,τ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121, 255001 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255001], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as N=14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic density response of correlated electrons, which is of high importance for many applications in WDM theory and beyond.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
8
|
Ghorai PK, Matyushov DV. Equilibrium Solvation, Electron-Transfer Reactions, and Stokes-Shift Dynamics in Ionic Liquids. J Phys Chem B 2020; 124:3754-3769. [DOI: 10.1021/acs.jpcb.0c01773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Choi Y, Dharuman G, Murillo MS. High-frequency response of classical strongly coupled plasmas. Phys Rev E 2019; 100:013206. [PMID: 31499843 DOI: 10.1103/physreve.100.013206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged molecular dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theoretical models of ion-acoustic wave-dispersion relations, the intermediate scattering function, and the high-frequency response. We compare our MD results with seven diverse models, finding good agreement among those that enforce the three basic sum rules for dispersion properties, although one of the models has previously unreported spurious peaks. The MD simulations reveal that at intermediate frequencies ω, the high-frequency response of the DSF follows a power law, going approximately as ω^{-p}, where p>0, and p shows nontrivial dependencies on the wave vector q and the plasma parameters κ and Γ. In contrast, among the seven comparison models, the predicted high-frequency response is found to be independent of {q,κ,Γ}. This high-frequency power suggests a useful fitting form. In addition, these results expose limitations of several models and, moreover, suggest that some approaches are difficult or impossible to extend because of the lack of finite moments. We also find the double-plasmon resonance peak in our MD simulations that none of the theoretical models predicts.
Collapse
Affiliation(s)
- Yongjun Choi
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gautham Dharuman
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
10
|
Moldabekov ZA, Kählert H, Dornheim T, Groth S, Bonitz M, Ramazanov TS. Dynamical structure factor of strongly coupled ions in a dense quantum plasma. Phys Rev E 2019; 99:053203. [PMID: 31212426 DOI: 10.1103/physreve.99.053203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The dynamical structure factor (DSF) of strongly coupled ions in dense plasmas with partially and strongly degenerate electrons is investigated. The main focus is on the impact of electronic correlations (nonideality) on the ionic DSF. The latter is computed by carrying out molecular dynamics (MD) simulations with a screened ion-ion interaction potential. The electronic screening is taken into account by invoking the Singwi-Tosi-Land-Sjölander approximation, and it is compared to the MD simulation data obtained considering the electronic screening in the random phase approximation and using the Yukawa potential. We find that electronic correlations lead to lower values of the ion-acoustic mode frequencies and to an extension of the applicability limit with respect to the wave-number of a hydrodynamic description. Moreover, we show that even in the limit of weak electronic coupling, electronic correlations have a nonnegligible impact on the ionic longitudinal sound speed. Additionally, the applicability of the Yukawa potential with an adjustable screening parameter is discussed, which will be of interest, e.g., for the interpretation of experimental results for the ionic DSF of dense plasmas.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| | - H Kählert
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| |
Collapse
|
11
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 121:255001. [PMID: 30608805 DOI: 10.1103/physrevlett.121.255001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor S(q,ω) constitutes a key quantity as it is directly measured in x-ray Thomson scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first ab initio results for S(q,ω) by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction G(q,ω). In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for S(q,ω) over substantial parts of the warm dense matter regime.
Collapse
Affiliation(s)
- T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
12
|
Mokshin AV, Galimzyanov BN. Self-consistent description of local density dynamics in simple liquids. The case of molten lithium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:085102. [PMID: 29334360 DOI: 10.1088/1361-648x/aaa7bc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The dynamic structure factor is the quantity, which can be measured by means of Brillouin light-scattering as well as by means of inelastic scattering of neutrons and x-rays. The spectral (or frequency) moments of the dynamic structure factor define directly the sum rules of the scattering law. The theoretical scheme formulated in this study allows one to describe the dynamics of local density fluctuations in simple liquids and to obtain the expression of the dynamic structure factor in terms of the spectral moments. The theory satisfies all the sum rules, and the obtained expression for the dynamic structure factor yields correct extrapolations into the hydrodynamic limit as well as into the free-particle dynamics limit. We discuss correspondence of this theory with the generalized hydrodynamics and with the viscoelastic models, which are commonly used to analyze the data of inelastic neutron and x-ray scattering in liquids. In particular, we reveal that the postulated condition of the viscoelastic model for the memory function can be directly obtained within the presented theory. The dynamic structure factor of liquid lithium is computed on the basis of the presented theory, and various features of the scattering spectra are evaluated. It is found that the theoretical results are in agreement with inelastic x-ray scattering data.
Collapse
Affiliation(s)
- A V Mokshin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | | |
Collapse
|
13
|
Vorberger J, Chapman DA. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering. Phys Rev E 2018; 97:013203. [PMID: 29448372 DOI: 10.1103/physreve.97.013203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 06/08/2023]
Abstract
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Collapse
Affiliation(s)
- J Vorberger
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden, Germany
| | - D A Chapman
- AWE plc, Aldermaston, Reading RG7 4PR, United Kingdom
- Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas. Phys Rev E 2017; 96:023203. [PMID: 28950530 DOI: 10.1103/physreve.96.023203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 06/07/2023]
Abstract
The static density response of the uniform electron gas is of fundamental importance for numerous applications. Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC) technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015)10.1088/1367-2630/17/7/073017] to carry out extensive simulations of the harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results for the static density response function and, thus, the static local field correction. A comparison with dielectric approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we consider a superposition of multiple perturbations and discuss the implications for the calculation of the static response function.
Collapse
Affiliation(s)
- Tobias Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Simon Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|
15
|
Arkhipov YV, Askaruly A, Davletov AE, Dubovtsev DY, Donkó Z, Hartmann P, Korolov I, Conde L, Tkachenko IM. Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas. PHYSICAL REVIEW LETTERS 2017; 119:045001. [PMID: 29341739 DOI: 10.1103/physrevlett.119.045001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 06/07/2023]
Abstract
Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are obtained within the nonperturbative model-free moment approach without any data input from simulations so that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. The DSF, dispersion, decay, sound speed, and other characteristics of the collective modes are determined using exclusively the static structure factor calculated from various theoretical approaches including the hypernetted chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved.
Collapse
Affiliation(s)
- Yu V Arkhipov
- Al-Farabi Kazakh National University, IETP, Faculty of Physics and Technology, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A Askaruly
- Al-Farabi Kazakh National University, IETP, Faculty of Physics and Technology, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A E Davletov
- Al-Farabi Kazakh National University, IETP, Faculty of Physics and Technology, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - D Yu Dubovtsev
- Al-Farabi Kazakh National University, IETP, Faculty of Physics and Technology, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - Z Donkó
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest, Hungary
| | - P Hartmann
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest, Hungary
| | - I Korolov
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest, Hungary
| | - L Conde
- Departamento de Física Aplicada a la Ingeniería Aeronáutica, ETSIA, Universidad Politécnica de Madrid, Pl. Cardenal Cisneros 3, 28040 Madrid, Spain
| | - I M Tkachenko
- Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics. Nat Commun 2017; 8:14125. [PMID: 28134338 PMCID: PMC5290263 DOI: 10.1038/ncomms14125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.
Collapse
|
17
|
Fu ZG, Wang Z, Li ML, Li DF, Kang W, Zhang P. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas. Phys Rev E 2016; 94:063203. [PMID: 28085472 DOI: 10.1103/physreve.94.063203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 06/06/2023]
Abstract
The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ∼15 MeV passing through a WDP of beryllium with an electronic density around the solid value n_{e}≈3×10^{23}cm^{-3} and with temperature around ∼40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.
Collapse
Affiliation(s)
- Zhen-Guo Fu
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Zhigang Wang
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Meng-Lei Li
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Da-Fang Li
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| | - Ping Zhang
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Center for Compression Science, CAEP, Mianyang 621900, China
| |
Collapse
|
18
|
Cross JE, Mabey P, Gericke DO, Gregori G. Theory of density fluctuations in strongly radiative plasmas. Phys Rev E 2016; 93:033201. [PMID: 27078469 DOI: 10.1103/physreve.93.033201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 11/07/2022]
Abstract
Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be taken into consideration in such regimes.
Collapse
Affiliation(s)
- J E Cross
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - P Mabey
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - G Gregori
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
19
|
Zheng J, Chen Q, Yunjun G, Li Z, Shen Z. Multishock Compression Properties of Warm Dense Argon. Sci Rep 2015; 5:16041. [PMID: 26515505 PMCID: PMC4626864 DOI: 10.1038/srep16041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022] Open
Abstract
Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20–150 GPa and 1.9–5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2–23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime.
Collapse
Affiliation(s)
- Jun Zheng
- Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan, P. R. China
| | - Qifeng Chen
- Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan, P. R. China
| | - Gu Yunjun
- Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan, P. R. China
| | - Zhiguo Li
- Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan, P. R. China
| | - Zhijun Shen
- Laboratory of computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing, P. R. China
| |
Collapse
|
20
|
Militzer B, Driver KP. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. PHYSICAL REVIEW LETTERS 2015; 115:176403. [PMID: 26551129 DOI: 10.1103/physrevlett.115.176403] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 06/05/2023]
Abstract
We extend the applicability range of fermionic path integral Monte Carlo simulations to heavier elements and lower temperatures by introducing various localized nodal surfaces. Hartree-Fock nodes yield the most accurate prediction for pressure and internal energy, which we combine with the results from density functional molecular dynamics simulations to obtain a consistent equation of state for hot, dense silicon under plasma conditions and in the regime of warm dense matter (2.3-18.6 g cm(-3), 5.0×10(5)-1.3×10(8) K). The shock Hugoniot curve is derived and the structure of the fluid is characterized with various pair correlation functions.
Collapse
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley 94720, USA
- Department of Astronomy, University of California, Berkeley 94720, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley 94720, USA
| |
Collapse
|
21
|
Gill NM, Heinonen RA, Starrett CE, Saumon D. Ion-ion dynamic structure factor of warm dense mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:063109. [PMID: 26172810 DOI: 10.1103/physreve.91.063109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture-equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.
Collapse
Affiliation(s)
- N M Gill
- 206 Allison Laboratory, Auburn University, Auburn, Alabama 36849, USA
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - R A Heinonen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D Saumon
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
22
|
Chapman DA, Vorberger J, Fletcher LB, Baggott RA, Divol L, Döppner T, Falcone RW, Glenzer SH, Gregori G, Guymer TM, Kritcher AL, Landen OL, Ma T, Pak AE, Gericke DO. Observation of finite-wavelength screening in high-energy-density matter. Nat Commun 2015; 6:6839. [PMID: 25904218 PMCID: PMC4423234 DOI: 10.1038/ncomms7839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye-Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye-Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.
Collapse
Affiliation(s)
- D. A. Chapman
- AWE plc, Radiation Physics Department, Aldermaston, Reading RG7 4PR, UK
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - J. Vorberger
- Max-Planck-Institut für die Physik komplexer Systeme, Dresden 01187, Germany
| | - L. B. Fletcher
- High-Energy-Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R. A. Baggott
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - L. Divol
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T. Döppner
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R. W. Falcone
- Physics Department, University of California, Berkeley, California 94720, USA
| | - S. H. Glenzer
- High-Energy-Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G. Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - T. M. Guymer
- AWE plc, Radiation Physics Department, Aldermaston, Reading RG7 4PR, UK
| | - A. L. Kritcher
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - O. L. Landen
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T. Ma
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A. E. Pak
- National Ignition Facility and Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D. O. Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
23
|
Vorberger J, Gericke DO. Ab initio approach to model x-ray diffraction in warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033112. [PMID: 25871229 DOI: 10.1103/physreve.91.033112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 06/04/2023]
Abstract
It is demonstrated how the static electron-electron structure factor in warm dense matter can be obtained from density functional theory in combination with quantum Monte Carlo data. In contrast to theories assuming well-separated bound and free states, this ab initio approach yields also valid results for systems close to the Mott transition (pressure ionization), where bound states are strongly modified and merge with the continuum. The approach is applied to x-ray Thomson scattering and compared to predictions of the Chihara formula whereby we use the ion-ion and electron-ion structure from the same simulations. The results show significant deviations of the screening cloud from the often applied Debye-like form.
Collapse
Affiliation(s)
- J Vorberger
- Max-Planck-Institut für die Physik Komplexer Systeme, 01187 Dresden, Germany
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
24
|
Arkhipov YV, Ashikbayeva AB, Askaruly A, Davletov AE, Tkachenko IM. Dielectric function of dense plasmas, their stopping power, and sum rules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:053102. [PMID: 25493892 DOI: 10.1103/physreve.90.053102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid.
Collapse
Affiliation(s)
- Yu V Arkhipov
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A B Ashikbayeva
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A Askaruly
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A E Davletov
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - I M Tkachenko
- Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
25
|
Kählert H, Kalman GJ, Bonitz M. Dynamics of strongly correlated and strongly inhomogeneous plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:011101. [PMID: 25122241 DOI: 10.1103/physreve.90.011101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Indexed: 06/03/2023]
Abstract
Kinetic and fluid equations are derived for the dynamics of classical inhomogeneous trapped plasmas in the strong coupling regime. The starting point is an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the dynamic correlation function, which is allowed to depend on time and both particle coordinates separately. The time evolution of the correlation function is determined from the second equation of the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. We study the equations in the linear limit and derive a nonlocal equation for the fluid displacement field. Comparisons to first-principles molecular dynamics simulations reveal an excellent quality of our approach thereby overcoming the limitations of the broadly used STLS scheme.
Collapse
Affiliation(s)
- Hanno Kählert
- Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts 02467-3804, USA and Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel, Germany
| | - Gabor J Kalman
- Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, Massachusetts 02467-3804, USA
| | - Michael Bonitz
- Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel, Germany
| |
Collapse
|
26
|
Mithen JP. Transverse current fluctuations in the Yukawa one-component plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013101. [PMID: 24580340 DOI: 10.1103/physreve.89.013101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 06/03/2023]
Abstract
Using numerical simulations, we investigate the wave number and frequency dependent transverse current correlation function CT(k,ω) of a single-component fluid with Yukawa interaction potential, also known as the Yukawa one-component plasma. The transverse current correlation function is an important quantity because it contains the microscopic details of the viscoelastic behavior of the fluid. We show that, in the region of densities and temperatures in which shear waves do not propagate, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. As either the density is increased or the temperature decreased, the transverse current correlation function shows additional structure that the simple models fail to capture.
Collapse
Affiliation(s)
- James P Mithen
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
27
|
White TG, Richardson S, Crowley BJB, Pattison LK, Harris JWO, Gregori G. Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. PHYSICAL REVIEW LETTERS 2013; 111:175002. [PMID: 24206498 DOI: 10.1103/physrevlett.111.175002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 06/02/2023]
Abstract
Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function.
Collapse
Affiliation(s)
- T G White
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Chapman DA, Vorberger J, Gericke DO. Reduced coupled-mode approach to electron-ion energy relaxation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:013102. [PMID: 23944563 DOI: 10.1103/physreve.88.013102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 06/02/2023]
Abstract
We present a reduced model for the energy transfer via coupled collective modes in two-temperature plasmas based on quantum statistical theory. The model is compared with exact numerical evaluations of the coupled-mode (CM) energy transfer rate and with alternative reduced approaches over a range of conditions in the warm dense matter (WDM) and inertial confinement fusion (ICF) regimes. Our approach shows excellent agreement with an exact treatment of the CM rate and supports the importance of the coupled-mode effect for the temperature and energy relaxation in WDM and ICF plasmas. We find that electronic damping of collective ion density fluctuations is crucial for correctly describing the mode spectrum and, thus, the energy exchange. The reduced CM approach is studied over a wide parameter space, enabling us to establish its limits of applicability.
Collapse
Affiliation(s)
- D A Chapman
- Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR, United Kingdom
| | | | | |
Collapse
|
29
|
Shukla PK, Akbari-Moghanjoughi M. Hydrodynamic theory for ion structure and stopping power in quantum plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:043106. [PMID: 23679529 DOI: 10.1103/physreve.87.043106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/07/2013] [Indexed: 06/02/2023]
Abstract
We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion coupling parameter alone cannot be a good measure for determining ion correlation effects in a collisional quantum plasma, and such a characteristic of a dense quantum plasma should be evaluated against each of the plasma parameters involved. The present investigation thus provides testable predictions for the DISF and ISP and is henceforth applicable to a wide range of compressed plasma categories ranging from laboratory to astrophysical warm dense matter.
Collapse
Affiliation(s)
- P K Shukla
- International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|