1
|
Smith AD, Donley GJ, Del Gado E, Zavala VM. Topological Data Analysis for Particulate Gels. ACS NANO 2024; 18:28622-28635. [PMID: 39321316 DOI: 10.1021/acsnano.4c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Soft gels, formed via the self-assembly of particulate materials, exhibit intricate multiscale structures that provide them with flexibility and resilience when subjected to external stresses. This work combines particle simulations and topological data analysis (TDA) to characterize the complex multiscale structure of soft gels. Our TDA analysis focuses on the use of the Euler characteristic, which is an interpretable and computationally scalable topological descriptor that is combined with filtration operations to obtain information on the geometric (local) and topological (global) structure of soft gels. We reduce the topological information obtained with TDA using principal component analysis (PCA) and show that this provides an informative low-dimensional representation of the gel structure. We use the proposed computational framework to investigate the influence of gel preparation (e.g., quench rate, volume fraction) on soft gel structure and to explore dynamic deformations that emerge under oscillatory shear in various response regimes (linear, nonlinear, and flow). Our analysis provides evidence of the existence of hierarchical structures in soft gels, which are not easily identifiable otherwise. Moreover, our analysis reveals direct correlations between topological changes of the gel structure under deformation and mechanical phenomena distinctive of gel materials, such as stiffening and yielding. In summary, we show that TDA facilitates the mathematical representation, quantification, and analysis of soft gel structures, extending traditional network analysis methods to capture both local and global organization.
Collapse
Affiliation(s)
- Alexander D Smith
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gavin J Donley
- Department of Physics, Georgetown University, Washington, DC 20057, United States
| | - Emanuela Del Gado
- Department of Physics, Georgetown University, Washington, DC 20057, United States
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, United States
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Kavle P, Zorn JA, Dasgupta A, Wang B, Ramesh M, Chen LQ, Martin LW. Strain-Driven Mixed-Phase Domain Architectures and Topological Transitions in Pb 1- x Sr x TiO 3 Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203469. [PMID: 35917499 DOI: 10.1002/adma.202203469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The potential for creating hierarchical domain structures, or mixtures of energetically degenerate phases with distinct patterns that can be modified continually, in ferroelectric thin films offers a pathway to control their mesoscale structure beyond lattice-mismatch strain with a substrate. Here, it is demonstrated that varying the strontium content provides deterministic strain-driven control of hierarchical domain structures in Pb1- x Srx TiO3 solid-solution thin films wherein two types, c/a and a1 /a2 , of nanodomains can coexist. Combining phase-field simulations, epitaxial thin-film growth, detailed structural, domain, and physical-property characterization, it is observed that the system undergoes a gradual transformation (with increasing strontium content) from droplet-like a1 /a2 domains in a c/a domain matrix, to a connected-labyrinth geometry of c/a domains, to a disconnected labyrinth structure of the same, and, finally, to droplet-like c/a domains in an a1 /a2 domain matrix. A relationship between the different mixed-phase modulation patterns and its topological nature is established. Annealing the connected-labyrinth structure leads to domain coarsening forming distinctive regions of parallel c/a and a1 /a2 domain stripes, offering additional design flexibility. Finally, it is found that the connected-labyrinth domain patterns exhibit the highest dielectric permittivity.
Collapse
Affiliation(s)
- Pravin Kavle
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jacob A Zorn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Arvind Dasgupta
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Zhang Y, Jiang F, Tsuji T. Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice Boltzmann method. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Smith A, Zavala VM. The Euler characteristic: A general topological descriptor for complex data. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Suzuki A, Miyazawa M, Minto JM, Tsuji T, Obayashi I, Hiraoka Y, Ito T. Flow estimation solely from image data through persistent homology analysis. Sci Rep 2021; 11:17948. [PMID: 34504173 PMCID: PMC8429714 DOI: 10.1038/s41598-021-97222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Topological data analysis is an emerging concept of data analysis for characterizing shapes. A state-of-the-art tool in topological data analysis is persistent homology, which is expected to summarize quantified topological and geometric features. Although persistent homology is useful for revealing the topological and geometric information, it is difficult to interpret the parameters of persistent homology themselves and difficult to directly relate the parameters to physical properties. In this study, we focus on connectivity and apertures of flow channels detected from persistent homology analysis. We propose a method to estimate permeability in fracture networks from parameters of persistent homology. Synthetic 3D fracture network patterns and their direct flow simulations are used for the validation. The results suggest that the persistent homology can estimate fluid flow in fracture network based on the image data. This method can easily derive the flow phenomena based on the information of the structure.
Collapse
Affiliation(s)
- Anna Suzuki
- Institute of Fluid Science, Tohoku University, Sendai, 980-8577, Japan.
| | - Miyuki Miyazawa
- Institute of Fluid Science, Tohoku University, Sendai, 980-8577, Japan
| | - James M Minto
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Takeshi Tsuji
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0385, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0385, Japan
| | - Ippei Obayashi
- Cyber-Physical Engineering Information Research Core (Cypher), Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yasuaki Hiraoka
- Kyoto University Institute for Advanced Study, ASHBi, Kyoto University, Kyoto, 606-8501, Japan
| | - Takatoshi Ito
- Institute of Fluid Science, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
6
|
Abstract
This work studies how morphology (i.e., the shape of a structure) and topology (i.e., how different structures are connected) influence wall adsorption and capillary condensation under tight confinement. Numerical simulations based on classical density functional theory (cDFT) are run for a wide variety of geometries using both hard-sphere and Lennard-Jones fluids. These cDFT computations are compared to results obtained using the Minkowski functionals. It is found that the Minkowski functionals can provide a good description of the behavior of Lennard-Jones fluids down to small system sizes. In addition, through decomposition of the free energy, the Minkowski functionals provide a good framework to better understand what are the dominant contributions to the phase behavior of a system. Lastly, while studying the phase envelope shift as a function of the Minkowski functionals it is found that topology has a different effect depending on whether the phase transition under consideration is a continuous or a discrete (first-order) transition.
Collapse
|
7
|
Effect of Saturation and Image Resolution on Representative Elementary Volume and Topological Quantification: An Experimental Study on Bentheimer Sandstone Using Micro-CT. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01571-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Ebrahimi Viand R, Höfling F, Klein R, Delle Site L. Theory and simulation of open systems out of equilibrium. J Chem Phys 2020; 153:101102. [PMID: 32933284 DOI: 10.1063/5.0014065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We consider the theoretical model of Bergmann and Lebowitz for open systems out of equilibrium and translate its principles in the adaptive resolution simulation molecular dynamics technique. We simulate Lennard-Jones fluids with open boundaries in a thermal gradient and find excellent agreement of the stationary responses with the results obtained from the simulation of a larger locally forced closed system. The encouraging results pave the way for a computational treatment of open systems far from equilibrium framed in a well-established theoretical model that avoids possible numerical artifacts and physical misinterpretations.
Collapse
Affiliation(s)
- R Ebrahimi Viand
- Freie Universität Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - F Höfling
- Freie Universität Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - R Klein
- Freie Universität Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, Germany
| | - L Delle Site
- Freie Universität Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
9
|
Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale. J Colloid Interface Sci 2020; 562:159-169. [DOI: 10.1016/j.jcis.2019.11.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
|
10
|
Slotte PA, Berg CF, Khanamiri HH. Predicting Resistivity and Permeability of Porous Media Using Minkowski Functionals. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01363-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractPermeability and formation factor are important properties of a porous medium that only depend on pore space geometry, and it has been proposed that these transport properties may be predicted in terms of a set of geometric measures known as Minkowski functionals. The well-known Kozeny–Carman and Archie equations depend on porosity and surface area, which are closely related to two of these measures. The possibility of generalizations including the remaining Minkowski functionals is investigated in this paper. To this end, two-dimensional computer-generated pore spaces covering a wide range of Minkowski functional value combinations are generated. In general, due to Hadwiger’s theorem, any correlation based on any additive measurements cannot be expected to have more predictive power than those based on the Minkowski functionals. We conclude that the permeability and formation factor are not uniquely determined by the Minkowski functionals. Good correlations in terms of appropriately evaluated Minkowski functionals, where microporosity and surface roughness are ignored, can, however, be found. For a large class of random systems, these correlations predict permeability and formation factor with an accuracy of 40% and 20%, respectively.
Collapse
|
11
|
Petersen CF, Franosch T. Anomalous transport in the soft-sphere Lorentz model. SOFT MATTER 2019; 15:3906-3913. [PMID: 30998231 DOI: 10.1039/c9sm00442d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sensitivity of anomalous transport in crowded media to the form of the inter-particle interactions is investigated through computer simulations. We extend the highly simplified Lorentz model towards realistic natural systems by modeling the interactions between the tracer and the obstacles with a smooth potential. We find that the anomalous transport at the critical point happens to be governed by the same universal exponent as for hard exclusion interactions, although the mechanism of how narrow channels are probed is rather different. The scaling behavior of simulations close to the critical point confirm this exponent. Our result indicates that the simple Lorentz model may be applicable to describing the fundamental properties of long-range transport in real crowded environments.
Collapse
Affiliation(s)
- Charlotte F Petersen
- Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
12
|
Gniewek P, Hallatschek O. Fluid flow through packings of elastic shells. Phys Rev E 2019; 99:023103. [PMID: 30934257 PMCID: PMC6542697 DOI: 10.1103/physreve.99.023103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/07/2022]
Abstract
Fluid transport in porous materials is commonly studied in geological samples (soil, sediments, etc.) or idealized systems, but the fluid flow through compacted granular materials, consisting of substantially strained granules, remains relatively unexplored. As a step toward filling this gap, we study a model of liquid transport in packings of deformable elastic shells using finite-element and lattice-Boltzmann methods. We find that the fluid flow abruptly vanishes as the porosity of the material falls below a critical value, and the flow obstruction exhibits features of a percolation transition. We further show that the fluid flow can be captured by a simplified permeability model in which the complex porous material is replaced by a collection of disordered capillaries, which are distributed and shaped by the percolation transition. To that end, we numerically explore the divergence of hydraulic tortuosity τ_{H} and the decrease of a hydraulic radius R_{h} as the percolation threshold is approached. We interpret our results in terms of scaling predictions derived from the percolation theory applied to random packings of spheres.
Collapse
Affiliation(s)
- Pawel Gniewek
- Biophysics Graduate Group, University of California, Berkeley, USA
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, USA
| |
Collapse
|
13
|
Non-universality of the dynamic exponent in two-dimensional random media. Sci Rep 2019; 9:251. [PMID: 30670711 PMCID: PMC6342955 DOI: 10.1038/s41598-018-36236-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/12/2018] [Indexed: 11/09/2022] Open
Abstract
The diffusion of solutes in two-dimensional random media is important in diverse physical situations including the dynamics of proteins in crowded cell membranes and the adsorption on nano-structured substrates. It has generally been thought that the diffusion constant, D, should display universal behavior near the percolation threshold, i.e., D ~ (ϕ − ϕc)μ, where ϕ is the area fraction of the matrix, ϕc is the value of ϕ at the percolation threshold, and μ is the dynamic exponent. The universality of μ is important because it implies that very different processes, such as protein diffusion in membranes and the electrical conductivity in two-dimensional networks, obey similar underlying physical principles. In this work we demonstrate, using computer simulations on a model system, that the exponent μ is not universal, but depends on the microscopic nature of the dynamics. We consider a hard disc that moves via random walk in a matrix of fixed hard discs and show that μ depends on the maximum possible displacement Δ of the mobile hard disc, ranging from 1.31 at Δ ≤ 0.1 to 2.06 for relatively large values of Δ. We also show that this behavior arises from a power-law singularity in the distribution of transition rates due to a failure of the local equilibrium approximation. The non-universal value of μ obeys the prediction of the renormalization group theory. Our simulations do not, however, exclude the possibility that the non-universal values of μ might be a crossover between two different limiting values at very large and small values of Δ. The results allow one to rationalize experiments on diffusion in two-dimensional systems.
Collapse
|
14
|
Armstrong RT, McClure JE, Robins V, Liu Z, Arns CH, Schlüter S, Berg S. Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Liu Z, Herring A, Arns C, Berg S, Armstrong RT. Pore-Scale Characterization of Two-Phase Flow Using Integral Geometry. Transp Porous Media 2017. [DOI: 10.1007/s11242-017-0849-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
van der Linden JH, Narsilio GA, Tordesillas A. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Phys Rev E 2016; 94:022904. [PMID: 27627377 DOI: 10.1103/physreve.94.022904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 05/21/2023]
Abstract
We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.
Collapse
Affiliation(s)
| | - Guillermo A Narsilio
- Department of Infrastructure Engineering, The University of Melbourne, Australia
| | - Antoinette Tordesillas
- School of Mathematics and Statistics, School of Earth Sciences, The University of Melbourne, Australia
| |
Collapse
|
17
|
Grimmelsmann N, Meissner H, Ehrmann A. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1757-899x/137/1/012011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Jin C, Langston PA, Pavlovskaya GE, Hall MR, Rigby SP. Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media. Phys Rev E 2016; 93:013122. [PMID: 26871169 DOI: 10.1103/physreve.93.013122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 11/07/2022]
Abstract
We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously extracting correlation functions R_{uu}(r) of the spatial (Eulerian) velocity fields and microstructural two-point correlation functions S_{2}(r) of the random porous heterogeneous materials. This demonstrates that the effective physical transport properties depend on the characteristics of complex pore structure owing to the relationship between R_{uu}(r) and S_{2}(r) revealed in this study. Further, the mean excess plot was used to investigate the right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity distribution.
Collapse
Affiliation(s)
- C Jin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom.,GeoEnergy Research Centre (GERC), University of Nottingham, NG7 2RD, United Kingdom.,British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - P A Langston
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - G E Pavlovskaya
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, United Kingdom
| | - M R Hall
- GeoEnergy Research Centre (GERC), University of Nottingham, NG7 2RD, United Kingdom.,British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - S P Rigby
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom.,GeoEnergy Research Centre (GERC), University of Nottingham, NG7 2RD, United Kingdom.,British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
| |
Collapse
|
19
|
Spanner M, Höfling F, Kapfer SC, Mecke KR, Schröder-Turk GE, Franosch T. Splitting of the Universality Class of Anomalous Transport in Crowded Media. PHYSICAL REVIEW LETTERS 2016; 116:060601. [PMID: 26918973 DOI: 10.1103/physrevlett.116.060601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 06/05/2023]
Abstract
We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle nonuniversal way on the transport through narrow channels. At the same time, the different universality classes are robust with respect to introducing correlations in the obstacle matrix as we demonstrate for quenched hard-sphere liquids as underlying structures. Our results confirm that the microscopic dynamics can dominate the relaxational behavior even at long times, in striking contrast to glassy dynamics.
Collapse
Affiliation(s)
- Markus Spanner
- Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany, and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Sebastian C Kapfer
- Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Klaus R Mecke
- Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Gerd E Schröder-Turk
- Murdoch University, School of Engineering and IT, Mathematics and Statistics, Murdoch, Western Australia 6150, Australia
| | - Thomas Franosch
- Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
20
|
Scholz C, Wirner F, Klatt MA, Hirneise D, Schröder-Turk GE, Mecke K, Bechinger C. Direct relations between morphology and transport in Boolean models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:043023. [PMID: 26565348 DOI: 10.1103/physreve.92.043023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 06/05/2023]
Abstract
We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.
Collapse
Affiliation(s)
- Christian Scholz
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institut für Multiskalensimulation, Nägelsbachstraße 49b, Friedrich-Alexander Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Frank Wirner
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Michael A Klatt
- Institut für Theoretische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7B, 91058 Erlangen, Germany
| | - Daniel Hirneise
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Gerd E Schröder-Turk
- Institut für Theoretische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7B, 91058 Erlangen, Germany
- Murdoch University, School of Engineering & IT, Maths & Stats, 90 South Str., Murdoch WA 6150, Australia
| | - Klaus Mecke
- Institut für Theoretische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7B, 91058 Erlangen, Germany
| | - Clemens Bechinger
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
| |
Collapse
|
21
|
Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat Commun 2015; 6:6949. [PMID: 25901931 PMCID: PMC4421809 DOI: 10.1038/ncomms7949] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.
Collapse
|
22
|
Falk K, Coasne B, Pellenq R, Ulm FJ, Bocquet L. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat Commun 2015. [PMID: 25901931 DOI: 10.1038/ncomms7949.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.
Collapse
Affiliation(s)
- Kerstin Falk
- Department of Civil and Environmental Engineering and MultiScale Material Science for Energy and Environment UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Benoit Coasne
- Department of Civil and Environmental Engineering and MultiScale Material Science for Energy and Environment UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Roland Pellenq
- Department of Civil and Environmental Engineering and MultiScale Material Science for Energy and Environment UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Franz-Josef Ulm
- Department of Civil and Environmental Engineering and MultiScale Material Science for Energy and Environment UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Lydéric Bocquet
- Department of Civil and Environmental Engineering and MultiScale Material Science for Energy and Environment UMI 3466 CNRS-MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Bergamasco L, Izquierdo S, Pagonabarraga I, Fueyo N. Multi-scale permeability of deformable fibrous porous media. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Skaug MJ, Schwartz DK. Tracking Nanoparticle Diffusion in Porous Filtration Media. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503895b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael J. Skaug
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Lester DR, Metcalfe G, Trefry MG. Anomalous transport and chaotic advection in homogeneous porous media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:063012. [PMID: 25615192 DOI: 10.1103/physreve.90.063012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 06/04/2023]
Abstract
The topological complexity inherent to all porous media imparts persistent chaotic advection under steady flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic to superdiffusive transport, with asymptotic variance scaling as σ(L)(2)(t)∼t(2)/(ln t)(3). These results demonstrate that anomalous transport is inherent to homogeneous porous media and has significant implications for macrodispersion.
Collapse
Affiliation(s)
- D R Lester
- Mathematics, Informatics and Statistics, CSIRO, PO Box 56, Highett, Victoria 3190, Australia and School of Civil, Environmental and Chemical Engineering, Royal Melbourne Institute of Technology, Melbourne, Victoria 3001, Australia
| | - G Metcalfe
- Materials Science and Engineering, CSIRO, PO Box 56, Highett, Victoria 3190, Australia
| | - M G Trefry
- Land and Water, CSIRO, Private Bag 5, Wembley, Western Australia 6913, Australia and School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
26
|
Wirner F, Scholz C, Bechinger C. Geometrical interpretation of long-time tails of first-passage time distributions in porous media with stagnant parts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013025. [PMID: 25122387 DOI: 10.1103/physreve.90.013025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Using a combined experimental-numerical approach, we study the first-passage time distributions (FPTD) of small particles in two-dimensional porous materials. The distributions in low-porosity structures show persistent long-time tails, which are independent of the Péclet number and therefore cannot be explained by the advection-diffusion equation. Instead, our results suggest that these tails are caused by stagnant, i.e., quiescent areas where particles are trapped for some time. Comparison of measured FPTD with an analytical expression for the residence time of particles, which diffuse in confined regions and are able to escape through a small pore, yields good agreement with our data.
Collapse
Affiliation(s)
- Frank Wirner
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Christian Scholz
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Clemens Bechinger
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany and Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Aydogan DB, Hyttinen J. Characterization of microstructures using contour tree connectivity for fluid flow analysis. J R Soc Interface 2014; 11:20131042. [PMID: 24671931 DOI: 10.1098/rsif.2013.1042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the connectivity of material microstructures is important for a wide range of applications from filters to biomaterials. Currently, the most used measure of connectivity is the Euler number, which is a topological invariant. Topology alone, however, is not sufficient for most practical purposes. In this study, we use our recently introduced connectivity measure, called the contour tree connectivity (CTC), to study microstructures for flow analysis. CTC is a new structural connectivity measure that is based on contour trees and algebraic graph theory. To test CTC, we generated a dataset composed of 120 samples and six different types of artificial microstructures. We compared CTC against the Euler parameter (EP), the parameter for connected pairs, the nominal opening dimension (dnom) and the permeabilities estimated using direct pore scale modelling. The results show that dnom is highly correlated with permeability (R2=0.91), but cannot separate the structural differences. The groups are best classified with feature combinations that include CTC. CTC provides new information with a different connectivity interpretation that can be used to analyse and design materials with complex microstructures.
Collapse
Affiliation(s)
- Dogu Baran Aydogan
- Department of Electronics and Communications Engineering, Tampere University of Technology, , Tampere, Finland
| | | |
Collapse
|
28
|
Lester DR, Metcalfe G, Trefry MG. Is chaotic advection inherent to porous media flow? PHYSICAL REVIEW LETTERS 2013; 111:174101. [PMID: 24206492 DOI: 10.1103/physrevlett.111.174101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 06/02/2023]
Abstract
We show that chaotic advection is inherent to flow through all types of porous media, from granular and packed media to fractured and open networks. The basic topological complexity inherent to all porous media gives rise to chaotic flow dynamics under steady flow conditions, where fluid deformation local to stagnation points imparts a 3D fluid mechanical analog of the baker's map. The ubiquitous nature of chaotic advection has significant implications for the description of transport, mixing, chemical reaction and biological activity in porous media.
Collapse
Affiliation(s)
- D R Lester
- CSIRO Mathematics, Informatics and Statistics, P.O. Box 56, Highett, Victoria 3190, Australia
| | | | | |
Collapse
|