1
|
Liang J, Feng X, Zheng N, Wang H, Ni R, Zhang Z. Glass Transition in Monolayers of Rough Colloidal Ellipsoids. PHYSICAL REVIEW LETTERS 2025; 134:038202. [PMID: 39927969 DOI: 10.1103/physrevlett.134.038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025]
Abstract
Structure-dynamics correlation is one of the major ongoing debates in the glass transition, although a number of structural features have been found connected to the dynamic heterogeneity in different glass-forming colloidal systems. Here, using colloidal experiments combined with coarse-grained molecular dynamics simulations, we investigate the glass transition in monolayers of rough colloidal ellipsoids. Compared with smooth colloidal ellipsoids, the surface roughness of ellipsoids is found to significantly change the nature of glass transition. In particular, we find that the surface roughness induced by coating only a few small hemispheres on the ellipsoids can eliminate the existence of orientational glass and the two-step glass transition found in monolayers of smooth ellipsoids. This is due to the surface roughness-induced coupling between the translational and rotational degrees of freedom in colloidal ellipsoids, which also destroys the structure-dynamics correlation found in glass-forming suspensions of colloidal ellipsoids. Our results not only suggest a new way of using surface roughness to manipulate the glass transition in colloidal systems, but also highlight the importance of detailed particle shape on the glass transition and structure-dynamics correlation in suspensions of anisotropic colloids.
Collapse
Affiliation(s)
- Jian Liang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Xuan Feng
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Ning Zheng
- Beijing Institute of Technology, School of Physics, Beijing 100081, China
| | - Huaguang Wang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Ran Ni
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Zexin Zhang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
- Soochow University, Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Suzhou 215006, China
| |
Collapse
|
2
|
Alhissi M, Zumbusch A, Fuchs M. Observation of liquid glass in molecular dynamics simulations. J Chem Phys 2024; 160:164502. [PMID: 38656602 DOI: 10.1063/5.0196599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Molecular anisotropy plays an important role in the glass transition of a liquid. Recently, a novel bulk glass state has been discovered by optical microscopy experiments on suspensions of ellipsoidal colloids. "Liquid glass" is a disordered analog of a nematic liquid crystal, in which rotation motion is hindered but particles diffuse freely. Global nematic order is suppressed as clusters of aligned particles intertwine. We perform Brownian dynamics simulations to test the structure and dynamics of a dense system of soft ellipsoidal particles. As seen in the experiments and in accordance with predictions from the mode coupling theory, on the time scale of our simulations, rotation motion is frozen but translation motion persists in liquid glass. Analyses of the dynamic structure functions for translation and rotation corroborates the presence of two separate glass transitions for rotation and translation, respectively. Even though the equilibrium state should be nematic, aligned structures remain small and orientational order rapidly decays with increasing size. Long-wavelength fluctuations are remnants of the isotropic-nematic transition.
Collapse
Affiliation(s)
- Mohammed Alhissi
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | - Andreas Zumbusch
- Fachbereich Chemie, Universität Konstanz, 78464 Konstanz, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Li B, You W, Liu S, Peng L, Huang X, Yu W. Role of confinement in the shear banding and shear jamming in noncolloidal fiber suspensions. SOFT MATTER 2023; 19:8965-8977. [PMID: 37962482 DOI: 10.1039/d3sm00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The jamming effect is critical in processing short fiber-reinforced thermoplastics (FRTs). Fiber jamming can induce discontinuous shear thickening (DST) in simple shear and result in fiber-matrix separation in more complex flows such as injection molding and compression molding of FRTs. The confinement effect commonly induces local jams and strongly enhances fiber jamming. However, the transient evolution of local fiber jams under confinement and its correlation with the tumbling of fibers are still elusive. In this study, we adopted rheo-PIV (particle image velocity) techniques to study this effect for glass fiber-reinforced thermoplastics (FRTs). The translational and tumbling motion of fiber were determined during rheological measurements, and the distribution of fiber orientation was determined by X-ray CT. Three shear banding regions appeared after the viscosity overshoot under high shear stress in suspensions with high fiber content, which was associated with the three regions of fiber orientation across the gap due to confinement. Shear banding was ascribed to the different tumbling speeds across the gap because of the different initial orientations and different wall confinements near and far from the wall. The local shear thickening and jamming behavior became most significant under intermediate confinement, and were affected by shear strain, shear stress, and fiber contents. 3D state diagrams were constructed to show the confinement effect on the evolution of shear banding and jamming.
Collapse
Affiliation(s)
- Benke Li
- Advanced Rheology Institute, State Key Laboratory for Metal Matrix Composite Materials, Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd, Guangzhou 510663, P. R. China.
| | - Wei You
- Advanced Rheology Institute, State Key Laboratory for Metal Matrix Composite Materials, Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Sijun Liu
- Advanced Rheology Institute, State Key Laboratory for Metal Matrix Composite Materials, Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Li Peng
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd, Guangzhou 510663, P. R. China.
| | - Xianbo Huang
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd, Guangzhou 510663, P. R. China.
| | - Wei Yu
- Advanced Rheology Institute, State Key Laboratory for Metal Matrix Composite Materials, Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
4
|
Anop H, Buitenhuis J. Polyelectrolyte Complexes from Oppositely Charged Filamentous Viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4545-4556. [PMID: 36947868 PMCID: PMC10077591 DOI: 10.1021/acs.langmuir.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Here, we present an explorative study on a new type of polyelectrolyte complex made from chemically modified filamentous fd viruses. The fd virus is a semiflexible rod-shaped bacteriophage with a length of 880 nm and a diameter of 6.6 nm, which has been widely used as a well-defined model system of colloidal rods to investigate phase, flow, and other behavior. Here, chemically modified viruses have been prepared to obtain two types with opposite electrical charges in addition to a steric stabilization layer by poly(ethylene glycol) (PEG) grafting. The complex formation of stoichiometric mixtures of these oppositely charged viruses is studied as a function of virus and salt concentration. Furthermore, static light scattering measurements show a varying, strong increase in scattering intensity in some samples without visual macroscopic complex formation. Finally, the results of the complex formation are rationalized by comparing to model calculations on the pair interaction potential between oppositely charged viruses.
Collapse
Affiliation(s)
- Hanna Anop
- Forschungszentrum
Jülich, IBI-4, Biomacromolecular Systems and Processes, 52425 Jülich, Germany
- Cordouan
Technologies, Cité
de la Photonique, 11 Avenue Canteranne, 33600 Pessac, France
| | - Johan Buitenhuis
- Forschungszentrum
Jülich, IBI-4, Biomacromolecular Systems and Processes, 52425 Jülich, Germany
| |
Collapse
|
5
|
Sewring T, Trulsson M. Ground State Configurations and Metastable Phases of Charged Linear Rods. ACS OMEGA 2023; 8:6040-6051. [PMID: 36816665 PMCID: PMC9933468 DOI: 10.1021/acsomega.2c08060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This computational study investigates the energy minimum, that is, ground state, of suspensions of monodisperse (single-component) charged linear rods at various densities and screening lengths. We find that closed-packed unidirectional configurations have the lowest energies for all studied cases. We further specify the lattice parameters for these crystalline structures. In addition, we identify a few metastable phases, including heliconical structures. These metastable heliconical phases are composed of hexagonal smectic C layers with particle orientations forming a conical helicoid with a short pitch of three layers. We evidence this by zero-temperature Monte Carlo simulations starting from an energy-minimized hexagonal cholesteric configuration, which rapidly transforms to a heliconical phase. Furthermore, this heliconical phase is remarkably stable even at finite temperatures and melts to a disordered phase at high temperatures. Finally, we conduct simulations at room temperature and conditions typical for cellulose nanocrystal suspensions to study the onset of nematic order and compare our results to available experimental data. Our findings suggest that electrostatics play an important role in the isotropic/anisotropic transition for dense suspensions of charged rods.
Collapse
Affiliation(s)
- Tor Sewring
- Theoretical
Chemistry, Lund University, 221 00Lund, Sweden
| | | |
Collapse
|
6
|
Abbasi Moud A. Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS OMEGA 2022; 7:30673-30699. [PMID: 36092570 PMCID: PMC9453985 DOI: 10.1021/acsomega.2c03311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
By using an independent self-assembly process that is occasionally controlled by evaporation, cellulose nanocrystals (CNCs) may create films (pure or in conjunction with other materials) that have iridescent structural colors. The self-forming chiral nematic structures and environmental safety of a new class of photonic liquid crystals (LCs), referred to as CNCs and CNC-embedded materials, make them simple to make and treat. The structure of the matrix interacts with light to give structural coloring, as opposed to other dye pigments, which interact with light by adsorption and reflection. Understanding how CNC self-assembly constructs structures is vital in several fields, including physics, science, and engineering. To constructure this review, the colloidal characteristics of CNC particles and their behavior during the formation of liquid crystals and gelling were studied. Then, some of the recognized applications for these naturally occurring nanoparticles were summarized. Different factors were considered, including the CNC aspect ratio, surface chemistry, concentration, the amount of time needed to produce an anisotropic phase, and the addition of additional substances to the suspension medium. The effects of alignment and the drying process conditions on structural changes are also covered. The focus of this study however is on the optical properties of the films as well as the impact of the aforementioned factors on the final transparency, iridescent colors, and versus the overall response of these bioinspired photonic materials. Control of the examined factors was found to be necessary to produce reliable materials for optoelectronics, intelligent inks and papers, transparent flexible support for electronics, and decorative coatings and films.
Collapse
|
7
|
Kang K. Equilibrium phase diagram and thermal responses of charged DNA-virus rod-suspensions at low ionic strengths. Sci Rep 2021; 11:3472. [PMID: 33568703 PMCID: PMC7876043 DOI: 10.1038/s41598-021-82653-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The collective behavior of DNA is important for exploring new types of bacteria in the means of detection, which is greatly interested in the understanding of interactions between DNAs in living systems. How they self-organize themselves is a physical common phenomenon for broad ranges of thermodynamic systems. In this work, the equilibrium phase diagrams of charged chiral rods (fd viruses) at low ionic strengths (below a few mM) are provided to demonstrate both replicas of (or self-organized) twist orders and replica symmetry breaking near high concentration glass-states. By varying the ionic strengths, it appears that a critical ionic strength is obtained below 1-2 mM salt, where the twist and freezing of nematic domains diverge. Also, the microscopic relaxation is revealed by the ionic strength-dependent effective Debye screening length. At a fixed low ionic strength, the local orientations of twist are shown by two different length scales of optical pitch, in the chiral-nematic N* phase and the helical domains [Formula: see text], for low and high concentration, respectively. RSB occurs in several cases of crossing phase boundary lines in the equilibrium phase diagram of DNA-rod concentration and ionic strength, including long-time kinetic arrests in the presence of twist orders. The different pathways of PATH I, II and III are due to many-body effects of randomized orientations for charged fd rods undergoing long-range electrostatic interactions in bulk elastic medium. In addition, the thermal stability are shown for chiral pitches of the N* phase and the abnormal cooling process of a specific heat in a structural glass. Here, the concentration-driven twist-effects of charged DNA rods are explored using various experimental methods involving image-time correlation, microscopic dynamics in small angle dynamic light scattering, optical activity in second harmonic generation, and differential scanning calorimetry for the glass state.
Collapse
Affiliation(s)
- Kyongok Kang
- Institute of Biological Information Processing, IBI-4, Biomacromolecular Systems and Processes, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
8
|
Roller J, Laganapan A, Meijer JM, Fuchs M, Zumbusch A. Observation of liquid glass in suspensions of ellipsoidal colloids. Proc Natl Acad Sci U S A 2021; 118:e2018072118. [PMID: 33397813 PMCID: PMC7826331 DOI: 10.1073/pnas.2018072118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite the omnipresence of colloidal suspensions, little is known about the influence of colloid shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results at high concentrations have been limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are nonspherical, and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy of fluorescently labeled core-shell particles, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives evidence of the importance of shape on the glass transition in general.
Collapse
Affiliation(s)
- Jörg Roller
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Aleena Laganapan
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
| | - Janne-Mieke Meijer
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthias Fuchs
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany;
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| |
Collapse
|
9
|
|
10
|
Zhu B, Johansen VE, Kamita G, Guidetti G, Bay M, Parton TG, Frka-Petesic B, Vignolini S. Hyperspectral Imaging of Photonic Cellulose Nanocrystal Films: Structure of Local Defects and Implications for Self-Assembly Pathways. ACS NANO 2020; 14:15361-15373. [PMID: 33090776 PMCID: PMC7690050 DOI: 10.1021/acsnano.0c05785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cellulose nanocrystals (CNCs) can spontaneously assemble into chiral nematic films capable of reflecting circularly polarized light in the visible range. As many other photonic materials obtained by bottom-up approaches, CNC films often display defects that greatly impact their visual appearance. Here, we study the optical response of defects in photonic CNC films, coupling optical microscopy with hyperspectral imaging, and we compare it to optical simulations of discontinuous cholesteric structures of increasing complexity. Cross-sectional SEM observations of the film structure guided the choice of simulation parameters and showed excellent agreement with experimental optical patterns. More importantly, it strongly suggests that the last fraction of CNCs to self-assemble, upon solvent evaporation, does not undergo the typical nucleation and growth pathway, but a spinodal decomposition, an alternative self-assembly pathway so far overlooked in cast films and that can have far-reaching consequences on choices of CNC sources and assembly conditions.
Collapse
|
11
|
Komarov KA, Yurchenko SO. Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs. SOFT MATTER 2020; 16:8155-8168. [PMID: 32797126 DOI: 10.1039/d0sm01046d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Opening a way to designing tunable interactions between colloidal particles in rotating electric and magnetic fields provides rich opportunities both for fundamental studies of phase transitions and engineering of soft materials. Spatial hodographs, showing the distribution of the field magnitude and orientation, allow the adjustment of interactions and can be an extremely potent tool for prospective experiments, but remain unstudied systematically. Here, we calculate the tunable interactions between spherical particles in rhodonea, conical, cylindrical, and ellipsoidal field hodographs, as the most experimentally important cases. We discovered that spatial hodographs are reduced to each other, providing a plethora of interactions, e.g., repulsive, attractive, barrier-like, and double-scale repulsive ones. Complementing the "magic" conical angle, the "magic" compression and ellipticity of cylindrical and ellipsoidal hodographs are introduced. In the "magic" hodographs, the interactions become spatially isotropic and attain dispersion-force-like asymptotic (the same for pairwise and many-body energies), being attractive or repulsive, if the particle permittivity is larger or smaller than that of the solvent. With the diagrammatic method and numerical calculations, we obtained physically meaningful fits to the many-body tunable potentials for silica (iron oxide) particles in deionised water in the rotating electric (magnetic) fields. Our results provide essential guidance for future experiments and simulations of colloidal liquids, crystals, gels, and glasses, important for a broad range of problems in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.
Collapse
Affiliation(s)
- Kirill A Komarov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia. and Institute for High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow, 108840, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia.
| |
Collapse
|
12
|
Rüter A, Kuczera S, Gentile L, Olsson U. Arrested dynamics in a model peptide hydrogel system. SOFT MATTER 2020; 16:2642-2651. [PMID: 32119019 DOI: 10.1039/c9sm02244a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods. The synthetic model peptides A8K and A10K, where A denotes alanine and K lysine, self-assemble in aqueous solutions into ribbon-like aggregates having an average length 〈L〉 on the order of 100 nm and with a diameter d≈ 6 nm. The aggregates can be seen as weakly charged rigid rods and they undergo an isotropic to nematic phase transition at higher concentrations. Translational motion perpendicular to the rod axis gets strongly hindered when the concentration is increased above the overlap concentration. Similarly, the rotational motion is hindered, leading to very long stress relaxation times. The peptide self-assembly is driven by hydrophobic interactions and due to a net peptide charge the system is colloidally stable. However, at the same time short range, presumably hydrophobic, attractive interactions appear to affect the rheology of the system. Upon screening the long range electrostatic repulsion, with the addition of salt, the hydrophobic attraction becomes more dominant and we observe a transition from a repulsive glassy state to an attractive gel-state of the rod-like peptide aggregates.
Collapse
Affiliation(s)
- Axel Rüter
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
13
|
From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. CRYSTALS 2020. [DOI: 10.3390/cryst10030199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial with attractive properties. Equally important is the interesting and useful behavior exhibited by solid CNC films, created by drying a cholesteric-forming suspension. However, the pathway along which these films are realized, starting from a CNC suspension that may have low enough concentration to be fully isotropic, is more complex than often appreciated, leading to reproducibility problems and confusion. Addressing a broad audience of physicists, chemists, materials scientists and engineers, this Review focuses primarily on the physics and physical chemistry of CNC suspensions and the process of drying them. The ambition is to explain rather than to repeat, hence we spend more time than usual on the meanings and relevance of the key colloid and liquid crystal science concepts that must be mastered in order to understand the behavior of CNC suspensions, and we present some interesting analyses, arguments and data for the first time. We go through the development of cholesteric nuclei (tactoids) from the isotropic phase and their potential impact on the final dry films; the spontaneous CNC fractionation that takes place in the phase coexistence window; the kinetic arrest that sets in when the CNC mass fraction reaches ∼10 wt.%, preserving the cholesteric helical order until the film has dried; the ’coffee-ring effect’ active prior to kinetic arrest, often ruining the uniformity in the produced films; and the compression of the helix during the final water evaporation, giving rise to visible structural color in the films.
Collapse
|
14
|
Chu G, Vasilyev G, Qu D, Deng S, Bai L, Rojas OJ, Zussman E. Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:979-985. [PMID: 31927969 PMCID: PMC7704027 DOI: 10.1021/acs.langmuir.9b03570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/22/2019] [Indexed: 05/31/2023]
Abstract
From drying blood to oil paint, the developing of a glassy phase from colloids is observed on a daily basis. Colloidal glass is solid soft matter that consists of two intertwined phases: a random packed particle network and a fluid solvent. By dispersing charged rod-like cellulose nanoparticles into a water-ethylene glycol cosolvent, here we demonstrate a new kind of colloidal glass with a high liquid crystalline order, namely, two general superstructures with nematic and cholesteric packing states are preserved and jammed inside the glass matrix. During the glass formation process, structural arrest and phase transition occur simultaneously at high particle concentrations, yielding solid-like behavior as well as a frozen liquid crystal texture that is because of caging of the charged colloids through neighboring long-ranged repulsive interactions.
Collapse
Affiliation(s)
- Guang Chu
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, Espoo FI-00076, Aalto, Finland
| | - Gleb Vasilyev
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dan Qu
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shengwei Deng
- College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Long Bai
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, Espoo FI-00076, Aalto, Finland
| | - Orlando J. Rojas
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, Espoo FI-00076, Aalto, Finland
- Department
of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver BC V6T 1Z3, Canada
| | - Eyal Zussman
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Pal A, Martinez VA, Ito TH, Arlt J, Crassous JJ, Poon WCK, Schurtenberger P. Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy. SCIENCE ADVANCES 2020; 6:eaaw9733. [PMID: 32010765 PMCID: PMC6968932 DOI: 10.1126/sciadv.aaw9733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Anisotropic dynamics on the colloidal length scale is ubiquitous in nature. Of particular interest is the dynamics of systems approaching a kinetically arrested state. The failure of classical techniques for investigating the dynamics of highly turbid suspensions has contributed toward the limited experimental information available up until now. Exploiting the recent developments in the technique of differential dynamic microscopy (DDM), we report the first experimental study of the anisotropic collective dynamics of colloidal ellipsoids with a magnetic hematite core over a wide concentration range approaching kinetic arrest. In addition, we have investigated the effect of an external magnetic field on the resulting anisotropic collective diffusion. We combine DDM with small-angle x-ray scattering and rheological measurements to locate the glass transition and to relate the collective short- and long-time diffusion coefficients to the structural correlations and the evolution of the zero shear viscosity as the system approaches an arrested state.
Collapse
Affiliation(s)
- Antara Pal
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Vincent A. Martinez
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Thiago H. Ito
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Jochen Arlt
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jérôme J. Crassous
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Wilson C. K. Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
- Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| |
Collapse
|
16
|
Parisi D, Ruan Y, Ochbaum G, Silmore KS, Cullari LL, Liu CY, Bitton R, Regev O, Swan JW, Loppinet B, Vlassopoulos D. Short and Soft: Multidomain Organization, Tunable Dynamics, and Jamming in Suspensions of Grafted Colloidal Cylinders with a Small Aspect Ratio. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17103-17113. [PMID: 31793788 DOI: 10.1021/acs.langmuir.9b03025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The yet virtually unexplored class of soft colloidal rods with a small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of the nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to small domains with preferred local orientation and eventually a multidomain arrangement with a local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on further increasing concentration, reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/mL:(I) from 0.03 to 0.1 g/mol, the system undergoes a liquid-to-solidlike transition with a structural relaxation time that grows by 4 orders of magnitude. (II) From 0.1 to 0.2 g/mL, a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to a multidomain structure. (III) Between 0.2 and 0.6 g/mol, the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. (IV) At 0.74 g/mL, in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with a large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime and for tailoring the flow properties of nonspherical soft colloids.
Collapse
Affiliation(s)
- Daniele Parisi
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
- Department of Materials Science & Technology , University of Crete , Heraklion 71003 , Crete , Greece
| | - Yingbo Ruan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guy Ochbaum
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Kevin S Silmore
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge 02139 , Massachusetts , United States
| | - Lucas L Cullari
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Chen-Yang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Oren Regev
- Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - James W Swan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge 02139 , Massachusetts , United States
| | - Benoit Loppinet
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure & Laser, FORTH , Heraklion 71110 , Crete , Greece
- Department of Materials Science & Technology , University of Crete , Heraklion 71003 , Crete , Greece
| |
Collapse
|
17
|
Xu HN, Chu C, Wang L, Zhang L. Droplet clustering in cyclodextrin-based emulsions mediated by methylcellulose. SOFT MATTER 2019; 15:6842-6851. [PMID: 31406969 DOI: 10.1039/c9sm00875f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid droplet aggregation in cyclodextrin (CD)-stabilized emulsions limits their practical use as material templates. Herein, we formulate mixtures of submicron CD-based emulsion droplets suspended in aqueous solutions of methylcellulose (MC) with various concentrations and molecular weights. We evaluate the effects of MC on the microstructure and stability of the emulsions using different techniques including optical microscopy, laser particle analysis, confocal laser scanning microscopy and multiple light scattering, explore the rheological behavior of the emulsions through large amplitude oscillatory shear experiments, and study the viscoelastic nonlinearities of the emulsions as a function of strain and strain-rate space through nondimensional elastic and viscous Lissajous-Bowditch plots. It is demonstrated that the emulsion droplets are present in the form of small clusters and their size is almost independent of MC concentration and molecular weight. The clustering pattern is also supported by the changes in viscoelastic properties of the emulsions and the intracycle nonlinear behavior of the Lissajous-Bowditch plots. We propose for the first time that glass-like dynamic arrest takes place with the formation of small equilibrium droplet clusters in the situation where the CD-based emulsion droplets are forced by depletion flocculation and kinetic trapping simultaneously exerted by MC.
Collapse
Affiliation(s)
- Hua-Neng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | | | | | | |
Collapse
|
18
|
Frka-Petesic B, Kamita G, Guidetti G, Vignolini S. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. PHYSICAL REVIEW MATERIALS 2019; 3:045601. [PMID: 33225202 PMCID: PMC7116400 DOI: 10.1103/physrevmaterials.3.045601] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cellulose nanocrystals (CNCs) are bio-sourced chiral nanorods that can form stable colloidal suspensions able to spontaneously assemble above a critical concentration into a cholesteric liquid crystal, with a cholesteric pitch usually in the micron range. When these suspensions are dried on a substrate, solid films with a pitch of the order of few hundreds of nanometers can be produced, leading to intense reflection in the visible range. However, the resulting cholesteric nanostructure is usually not homogeneous within a sample and comports important variations of the cholesteric domain orientation and pitch, which affect the photonic properties. In this work, we first propose a model accounting for the formation of the photonic structure from the vertical compression of the cholesteric suspension upon solvent evaporation, starting at the onset of the kinetic arrest of the drying suspension and ending when solvent evaporation is complete. From that assumption, various structural features of the films can be derived, such as the variation of the cholesteric pitch with the domain tilt, the orientation distribution density of the final cholesteric domains and the distortion of the helix from the unperturbed cholesteric case. The angular-resolved optical response of such films is then derived, including the iridescence and the generation of higher order reflection bands, and a simulation of the angular optical response is provided, including its tailoring under external magnetic fields. Second, we conducted an experimental investigation of CNC films covering a structural and optical analysis of the films. The macroscopic appearance of the films is discussed and complemented with angular-resolved optical spectroscopy, optical and electron microscopy, and our quantitative analysis shows an excellent agreement with the proposed model. This allows us to access the precise composition and the pitch of the suspension when it transited into a kinetically arrested phase directly from the optical analysis of the film. This work highlights the key role that the anisotropic compression of the kinetically arrested state plays in the formation of CNC films and is relevant to the broader case of structure formation in cast dispersions and colloidal self-assembly upon solvent evaporation.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Gen Kamita
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Giulia Guidetti
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Silvia Vignolini
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| |
Collapse
|
19
|
Trombley CI, Ekiel-Jeżewska ML. Stable Configurations of Charged Sedimenting Particles. PHYSICAL REVIEW LETTERS 2018; 121:254502. [PMID: 30608858 DOI: 10.1103/physrevlett.121.254502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The qualitative behavior of charged particles in a vacuum is given by Earnshaw's theorem, which states that there is no steady configuration of charged particles in a vacuum that is asymptotically stable to perturbations. In a viscous fluid, examples of stationary configurations of sedimenting uncharged particles are known, but they are unstable or neutrally stable-they are not attractors. In this Letter, it is shown by example that two charged particles settling in a fluid may have a configuration that is asymptotically stable to perturbations for a wide range of charges, radii, and densities. The existence of such "bound states" is essential from a fundamental point of view and it can be significant for dilute charged particulate systems in various biological, medical, and industrial contexts.
Collapse
Affiliation(s)
- C I Trombley
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - M L Ekiel-Jeżewska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| |
Collapse
|
20
|
Cherpak V, Korolovych VF, Geryak R, Turiv T, Nepal D, Kelly J, Bunning TJ, Lavrentovich OD, Heller WT, Tsukruk VV. Robust Chiral Organization of Cellulose Nanocrystals in Capillary Confinement. NANO LETTERS 2018; 18:6770-6777. [PMID: 30351961 DOI: 10.1021/acs.nanolett.8b02522] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We showed large area uniformly aligned chiral photonic bioderived films from a liquid crystal phase formed by a cellulose nanocrystal (CNC) suspension placed in a thin capillary. As a result of the spatial confinement of the drying process, the interface between coexisting isotropic and chiral phases aligns perpendicular to the long axis of the capillary. This orientation facilitates a fast homogeneous growth of chiral pseudolayers parallel to the interface. Overall, the formation of organized solids takes hours vs weeks in contrast to the slow and heterogeneous process of drying from the traditional dish-cast approach. The saturation of water vapor in one end of the capillary causes anisotropic drying and promotes unidirectional propagation of the anisotropic phase in large regions that results in chiral CNC solid films with a uniformly oriented layered morphology. Corresponding ordering processes were monitored in situ at a nanoscale, mesoscale, and microscopic scale with complementary scattering and microscopic techniques. The resulting films show high orientation order at a multilength scale over large regions and preserved chiral handedness causing a narrower optical reflectance band and uniform birefringence over macroscopic regions in contrast to traditional dish-cast CNC films and those assembled in a magnetic field and on porous substrates. These thin films with a controllable and well-identified uniform morphology, structural colors, and handedness open up interesting possibilities for broad applications in bioderived photonic nanomaterials.
Collapse
Affiliation(s)
- V Cherpak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - V F Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - R Geryak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - T Turiv
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44240 , United States
| | - D Nepal
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - J Kelly
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - T J Bunning
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - O D Lavrentovich
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44240 , United States
- Department of Physics , Kent State University , Kent , Ohio 44240 , United States
| | - W T Heller
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - V V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
21
|
May K, Stannarius R, Kang K, Challa PK, Sprunt S, Jákli A, Klein S, Eremin A. Collective dynamics in dispersions of anisometric pigment particles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films. Biomacromolecules 2018; 19:3233-3243. [DOI: 10.1021/acs.biomac.8b00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Xu HN, Li YH. Decoupling Arrest Origins in Hydrogels of Cellulose Nanofibrils. ACS OMEGA 2018; 3:1564-1571. [PMID: 31458480 PMCID: PMC6641346 DOI: 10.1021/acsomega.7b01905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Colloidal gels with various architectures and different types of interactions provide a unique opportunity to shed light on the interplay between microscopic structures and mechanical properties of soft glassy materials. Here, we prepare acetylated cellulose nanofibrils with 2 degrees of substitution and make a structural and rheological characterization of their hydrogels. Two-step yielding processes are observed in the shear experiments, which allow us to deduce more precise knowledge regarding localized structural changes of the fibrils. We separate the viscoelastic response into two contributions: the establishment of cross-linked clusters on a fibril level and the arrested phase separation on a cluster level. We hypothesize that with the addition of salt, the hydrogels exhibit different arrested states that are identified as unable to access the thermodynamic equilibrium. Our results highlight that the coexistence of gelation and glass transitions are experimentally recognized in the hydrogels, with a global gelation driven by a local glasslike arrest during spinodal decomposition.
Collapse
Affiliation(s)
- Hua-Neng Xu
- State Key Laboratory
of Food Science and Technology and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Ying-Hao Li
- State Key Laboratory
of Food Science and Technology and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| |
Collapse
|
24
|
Xu HN, Tang YY, Ouyang XK. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:235-242. [PMID: 27936767 DOI: 10.1021/acs.langmuir.6b03807] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The flow properties of two kinds of cellulose nanocrystal (CNC) rods with different aspect ratios and similar zeta potentials in aqueous suspensions have been investigated. The aqueous CNC suspensions undergo a direct transition from dilute solution to colloidal glass instead of phase separation with the increasing CNC concentration. The viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. The shear-thinning behavior becomes stronger with the increasing CNC concentration. The viscosity is much higher for the unsonicated suspension when compared with the sonicated suspensions. The CNC rods appear arrested without alignment with an increasing shear rate from the small-angle light scattering patterns. The arrested glass state results from electric double layers surrounding the CNC rods, which give rise to long-ranged repulsive interactions. For the first time, we demonstrate that, within a narrow range of CNC concentrations, a shear-induced breakup process of the CNC aggregates exists when the shear rate is over a critical value and that the process is reversible in the sense that the aggregates can be reformed. We discuss the competition between the shear-induced breakup and the concentration-driven aggregation based on the experimental observations. The generated aggregate structure during the breakup process is characterized by a fractal dimension of 2.41. Furthermore, we determine two important variables-the breakup rate and the characteristic aggregate size-and derive analytical expressions for their evolution during the breakup process. The model predictions are in quantitative agreement with the experimental results.
Collapse
Affiliation(s)
| | | | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University , Zhoushan 316022, People's Republic of China
| |
Collapse
|
25
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
26
|
Switching plastic crystals of colloidal rods with electric fields. Nat Commun 2015; 5:3092. [PMID: 24446033 PMCID: PMC3905722 DOI: 10.1038/ncomms4092] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/11/2013] [Indexed: 11/08/2022] Open
Abstract
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Collapse
|
27
|
Frohm B, DeNizio JE, Lee DSM, Gentile L, Olsson U, Malm J, Akerfeldt KS, Linse S. A peptide from human semenogelin I self-assembles into a pH-responsive hydrogel. SOFT MATTER 2015; 11:414-421. [PMID: 25408475 DOI: 10.1039/c4sm01793e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The peptide GSFSIQYTYHV derived from human semenogelin I forms a transparent hydrogel through spontaneous self-assembly in water at neutral pH. Linear rheology measurements demonstrate that the gel shows a dominating elastic response over a large frequency interval. CD, fluorescence and FTIR spectroscopy and cryo-TEM studies imply long fibrillar aggregates of extended β-sheet. Dynamic light scattering data indicate that the fibril lengths are of the order of micrometers. Time-dependent thioflavin T fluorescence shows that fibril formation by GSFSIQYTYHV is a nucleated reaction. The peptide may serve as basis for development of smart biomaterials of low immunogenicity suitable for biomedical applications, including drug delivery and wound healing.
Collapse
Affiliation(s)
- B Frohm
- Biochemistry and Structural Biology, Lund University, P O Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
It has recently been shown that suspensions of long and thin charged fibrous viruses (fd) form a glass at low ionic strengths. The corresponding thick electric double layers give rise to long-ranged repulsive electrostatic interactions, which lead to caging and structural arrest at concentrations far above the isotropic-nematic coexistence region. Structural arrest and freezing of the orientational texture are found to occur at the same concentration. In addition, various types of orientational textures are equilibrated below the glass transition concentration, ranging from a chiral-nematic texture with a large pitch (of about 100 μm), an X-pattern, and a tightly packed domain texture, consisting of helical domains with a relatively small pitch (of about 10 μm) and twisted boundaries. The dynamics of both particles as well as the texture are discussed, below and above the glass transition. Dynamic light scattering correlation functions exhibit two dynamical modes, where the slow mode is attributed to the elasticity of helical domains. On approach of the glass-transition concentration, the slow mode increases in amplitude, while as the amplitudes of the fast and slow mode become equal at the glass transition. Finally, interesting features of the "transient" behaviors of charged fd-rod glass are shown as the initial caging due to structural arrest, the propagation of flow originating from stress release, and the transition to the final metastable glass state. In addition to the intensity correlation function, power spectra are presented as a function of the waiting time, at the zero-frequency limit that may access to the thermal anomalities in a charged system.
Collapse
Affiliation(s)
- Kyongok Kang
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-3), D-52425 Jülich, Germany.
| |
Collapse
|
29
|
Park JH, Noh J, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JPF. Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. Chemphyschem 2014; 15:1477-84. [PMID: 24677344 DOI: 10.1002/cphc.201400062] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 11/07/2022]
Abstract
The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film formation is introduced, which yields dramatically improved uniformity, as confirmed by using polarizing optical and scanning electron microscopy. By raising the CNC concentration in the initial suspension to the fully liquid crystalline range, a vertical helix orientation is promoted, as directed by the macroscopic phase boundaries. Further control of the helix orientation is achieved by subjecting the suspension to a circular shear flow during drying.
Collapse
Affiliation(s)
- Ji Hyun Park
- Graduate School of Convergence Science & Technology, Nano Science & Technology Program, Seoul National University, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do (Korea)
| | | | | | | | | | | | | |
Collapse
|
30
|
Naderi S, Pouget E, Ballesta P, van der Schoot P, Lettinga MP, Grelet E. Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike particles. PHYSICAL REVIEW LETTERS 2013; 111:037801. [PMID: 23909360 DOI: 10.1103/physrevlett.111.037801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Indexed: 06/02/2023]
Abstract
We report on single-particle dynamics of strongly interacting filamentous fd virus particles in the liquid-crystalline columnar state in aqueous solution. From fluorescence microscopy, we find that rare, discrete events take place, in which individual particles engage in sudden, jumplike motion along the main rod axis. The jump length distribution is bimodal and centered at half- and full-particle lengths. Our Brownian dynamics simulations of hard semiflexible particles mimic our experiments and indicate that full-length jumps must be due to collective dynamics in which particles move in stringlike fashion in and between neighboring columns, while half jumps arise as a result of particles moving into defects. We find that the finite domain structure of the columnar phase strongly influences the observed dynamics.
Collapse
Affiliation(s)
- Saber Naderi
- Faculteit Technische Natuurkunde, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|