1
|
Dorst RS, Le A, Constantin CG, Larson DJ, Pilgram JJ, Vincena S, Tripathi SKP, Cowee MM, Winske D, Schaeffer DB, Niemann C. Laboratory Demonstration of Collisionless Blob Formation via Laser-Produced Plasma Self-Focusing. PHYSICAL REVIEW LETTERS 2025; 134:055101. [PMID: 39983141 DOI: 10.1103/physrevlett.134.055101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
Strongly localized, propagating plasma density structures that are capable of crossing magnetic field lines are known as "blobs." Here we demonstrate a novel mechanism for the formation and propagation of an ion gyroradius-scale blob-cavity structure at the interface between a super-Alfvénic laser-produced plasma (LPP) and an ambient magnetized plasma. The LPP self-focuses along the edge of the diamagnetic cavity which results in a dense, jetlike structure as compared to ballistic motion. This collimated flow couples momentum to the ambient plasma through a collisionless process known as Larmor coupling. The Larmor electric fields locally displace the ambient ions forming a blob above the LPP flow. In the region between a gyrating blob and collimated LPP flow, a secondary cavity of expelled magnetic field forms. These findings are supported by particle-in-cell simulations that replicate the blob formation mechanism and provide insight to similar processes in space, astrophysical, and laboratory settings characterized by ion kinetic scales.
Collapse
Affiliation(s)
- R S Dorst
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - A Le
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - C G Constantin
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - D J Larson
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J J Pilgram
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - S Vincena
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - S K P Tripathi
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - M M Cowee
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - D Winske
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - D B Schaeffer
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| | - C Niemann
- University of California - Los Angeles, Department of Physics and Astronomy, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field. Sci Rep 2021; 11:8180. [PMID: 33854146 PMCID: PMC8047033 DOI: 10.1038/s41598-021-87651-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{12}$$\end{document}12–10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{13}$$\end{document}13 W/cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^2$$\end{document}2) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 8$$\end{document}∼8 ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 2\%$$\end{document}∼2% of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.
Collapse
|
3
|
Revet G, Khiar B, Filippov E, Argiroffi C, Béard J, Bonito R, Cerchez M, Chen SN, Gangolf T, Higginson DP, Mignone A, Olmi B, Ouillé M, Ryazantsev SN, Skobelev IY, Safronova MI, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J. Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field. Nat Commun 2021; 12:762. [PMID: 33536408 PMCID: PMC7858631 DOI: 10.1038/s41467-021-20917-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 11/09/2022] Open
Abstract
The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the signature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field. Mass outflow is a common process in astrophysical objects. Here the authors investigate in which conditions an astrophysically-scaled laser-produced plasma flow can be collimated and evolves in the presence of a misaligned external magnetic field.
Collapse
Affiliation(s)
- G Revet
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia.,LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.,Centre Laser Intenses et Applications, Université de Bordeaux-CNRS-CEA, Talence, France
| | - B Khiar
- Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, Paris, France.,Flash Center for Computational Science, University of Chicago, Chicago, USA
| | - E Filippov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia.,Joint Institute for High Temperatures RAS, Moscow, Russia
| | - C Argiroffi
- Dipartimento di Fisica e Chimica, Universitá di Palermo, Palermo, Italy.,INAF-Osservatorio Astronomico di Palermo, Palermo, Italy
| | - J Béard
- LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, Toulouse, France
| | - R Bonito
- INAF-Osservatorio Astronomico di Palermo, Palermo, Italy
| | - M Cerchez
- Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - S N Chen
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia.,ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
| | - T Gangolf
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.,Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - D P Higginson
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.,Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - A Mignone
- Dip. di Fisica, Universiá di Torino, Torino, Italy
| | - B Olmi
- INAF-Osservatorio Astronomico di Palermo, Palermo, Italy.,INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy
| | - M Ouillé
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - S N Ryazantsev
- Joint Institute for High Temperatures RAS, Moscow, Russia.,National Research Nuclear University 'MEPhI', Moscow, Russia
| | - I Yu Skobelev
- Joint Institute for High Temperatures RAS, Moscow, Russia.,National Research Nuclear University 'MEPhI', Moscow, Russia
| | - M I Safronova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | - M Starodubtsev
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - O Willi
- Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - S Pikuz
- Joint Institute for High Temperatures RAS, Moscow, Russia.,National Research Nuclear University 'MEPhI', Moscow, Russia
| | - S Orlando
- INAF-Osservatorio Astronomico di Palermo, Palermo, Italy
| | - A Ciardi
- Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, Paris, France.
| | - J Fuchs
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia. .,LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
4
|
Zhou YJ, Ma J, Li F, Xian T, Yuan QH, Lu QF. Sensitivity improvement of solution cathode glow discharge-optical emission spectrometry by external magnetic field for optical determination of elements. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Khiar B, Revet G, Ciardi A, Burdonov K, Filippov E, Béard J, Cerchez M, Chen SN, Gangolf T, Makarov SS, Ouillé M, Safronova M, Skobelev IY, Soloviev A, Starodubtsev M, Willi O, Pikuz S, Fuchs J. Laser-Produced Magnetic-Rayleigh-Taylor Unstable Plasma Slabs in a 20 T Magnetic Field. PHYSICAL REVIEW LETTERS 2019; 123:205001. [PMID: 31809120 DOI: 10.1103/physrevlett.123.205001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the "classical," fluidlike magnetized Rayleigh-Taylor instability.
Collapse
Affiliation(s)
- B Khiar
- Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, CNRS UMR 8112, F-75005 Paris, France
- Flash Center for Computational Science, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - G Revet
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - A Ciardi
- Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, CNRS UMR 8112, F-75005 Paris, France
| | - K Burdonov
- Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, CNRS UMR 8112, F-75005 Paris, France
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - E Filippov
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
| | - J Béard
- LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, 31400 Toulouse, France
| | - M Cerchez
- Institute for Laser and Plasma Physics, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - S N Chen
- ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele, Romania
| | - T Gangolf
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
- Institute for Laser and Plasma Physics, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - S S Makarov
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
| | - M Ouillé
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
| | - M Safronova
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - I Yu Skobelev
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- National Research Nuclear University, MEPhI, 115409 Moscow, Russia
| | - A Soloviev
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - M Starodubtsev
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - O Willi
- Institute for Laser and Plasma Physics, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - S Pikuz
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- National Research Nuclear University, MEPhI, 115409 Moscow, Russia
| | - J Fuchs
- LULI - CNRS, CEA, Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France
- Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Manuel MJE, Sefkow AB, Kuranz CC, Rasmus AM, Klein SR, MacDonald MJ, Trantham MR, Fein JR, Belancourt PX, Young RP, Keiter PA, Pollock BB, Park J, Hazi AU, Williams GJ, Chen H, Drake RP. Magnetized Disruption of Inertially Confined Plasma Flows. PHYSICAL REVIEW LETTERS 2019; 122:225001. [PMID: 31283266 DOI: 10.1103/physrevlett.122.225001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The creation and disruption of inertially collimated plasma flows are investigated through experiment, simulation, and analytical modeling. Supersonic plasma jets are generated by laser-irradiated plastic cones and characterized by optical interferometry measurements. Targets are magnetized with a tunable B field with strengths of up to 5 T directed along the axis of jet propagation. These experiments demonstrate a hitherto unobserved phenomenon in the laboratory, the magnetic disruption of inertially confined plasma jets. This occurs due to flux compression on axis during jet formation and can be described using a Lagrangian-cylinder model of plasma evolution implementing finite resistivity. The basic physical mechanisms driving the dynamics of these systems are described by this model and then compared with two-dimensional radiation-magnetohydrodynamic simulations. Experimental, computational, and analytical results discussed herein suggest that contemporary models underestimate the electrical conductivity necessary to drive the amount of flux compression needed to explain observations of jet disruption.
Collapse
Affiliation(s)
- M J-E Manuel
- General Atomics, Inertial Fusion Technologies, San Diego, California 92121, USA
| | - A B Sefkow
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14623, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14623, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - C C Kuranz
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A M Rasmus
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - S R Klein
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M J MacDonald
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M R Trantham
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J R Fein
- Department of Nuclear Engineering and Radiation Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - P X Belancourt
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R P Young
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P A Keiter
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - B B Pollock
- Lawrence Livermore National Laboratories, Livermore, California 94550, USA
| | - J Park
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - A U Hazi
- Lawrence Livermore National Laboratories, Livermore, California 94550, USA
| | - G J Williams
- Lawrence Livermore National Laboratories, Livermore, California 94550, USA
| | - H Chen
- Lawrence Livermore National Laboratories, Livermore, California 94550, USA
| | - R P Drake
- Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Higginson DP, Khiar B, Revet G, Béard J, Blecher M, Borghesi M, Burdonov K, Chen SN, Filippov E, Khaghani D, Naughton K, Pépin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev SN, Skobelev IY, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet. PHYSICAL REVIEW LETTERS 2017; 119:255002. [PMID: 29303310 DOI: 10.1103/physrevlett.119.255002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 06/07/2023]
Abstract
We investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.
Collapse
Affiliation(s)
- D P Higginson
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - B Khiar
- Sorbonne Univ., UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005 Paris, France
- LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR 8112, F-75014 Paris, France
| | - G Revet
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - J Béard
- LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, 31400 Toulouse, France
| | - M Blecher
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - M Borghesi
- Centre for Plasma Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - K Burdonov
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - S N Chen
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - E Filippov
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- National Research Nuclear University "MEPhI," 115409 Moscow, Russia
| | - D Khaghani
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - K Naughton
- Centre for Plasma Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - H Pépin
- INRS-ÉMT, 1650 bd. L. Boulet, J3X1S2 Varennes, Québec, Canada
| | - S Pikuz
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- National Research Nuclear University "MEPhI," 115409 Moscow, Russia
| | - O Portugall
- LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, 31400 Toulouse, France
| | - C Riconda
- LULI, Sorbonne Univ.-UPMC Univ. Paris 06, École Polytechnique, CNRS, CEA, 75005 Paris, France
| | - R Riquier
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
- CEA, DAM, DIF, 91297 Arpajon, France
| | - R Rodriguez
- Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain
| | - S N Ryazantsev
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - I Yu Skobelev
- Joint Institute for High Temperatures, RAS, 125412 Moscow, Russia
- National Research Nuclear University "MEPhI," 115409 Moscow, Russia
| | - A Soloviev
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - M Starodubtsev
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - T Vinci
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
| | - O Willi
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - A Ciardi
- Sorbonne Univ., UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005 Paris, France
- LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR 8112, F-75014 Paris, France
| | - J Fuchs
- Laboratoire pour l'Utilisation des Lasers Intenses-CNRS, CEA, École Polytechnique, Univ. Paris-Saclay, Sorbonne Univ., UPMC Univ. Paris 06, F-91128 Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Revet G, Chen SN, Bonito R, Khiar B, Filippov E, Argiroffi C, Higginson DP, Orlando S, Béard J, Blecher M, Borghesi M, Burdonov K, Khaghani D, Naughton K, Pépin H, Portugall O, Riquier R, Rodriguez R, Ryazantsev SN, Yu. Skobelev I, Soloviev A, Willi O, Pikuz S, Ciardi A, Fuchs J. Laboratory unraveling of matter accretion in young stars. SCIENCE ADVANCES 2017; 3:e1700982. [PMID: 29109974 PMCID: PMC5665592 DOI: 10.1126/sciadv.1700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.
Collapse
Affiliation(s)
- Guilhem Revet
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
- LULI (Laboratoire pour l’Utilisation des Lasers Intenses)–CNRS, École Polytechnique; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France
| | - Sophia N. Chen
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
- LULI (Laboratoire pour l’Utilisation des Lasers Intenses)–CNRS, École Polytechnique; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France
| | - Rosaria Bonito
- INAF (Istituto Nazionale di Astrofisica)–Osservatorio Astronomico di Palermo, Palermo, Italy
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | - Benjamin Khiar
- Sorbonne Universités, UPMC Paris 06, Observatoire de Paris, PSL (Paris Sciences et Lettre) Research University, CNRS, UMR 8112, LERMA (Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique), F-75005 Paris, France
| | - Evgeny Filippov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
- Joint Institute for High Temperatures, RAS (Russian Academy of Sciences), Moscow 125412, Russia
| | | | - Drew P. Higginson
- LULI (Laboratoire pour l’Utilisation des Lasers Intenses)–CNRS, École Polytechnique; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Salvatore Orlando
- INAF (Istituto Nazionale di Astrofisica)–Osservatorio Astronomico di Palermo, Palermo, Italy
| | - Jérôme Béard
- LNCMI (Laboratoire National des Champs Magnétiques Intenses), UPR 3228, CNRS-UGA-UPS-INSA, Toulouse 31400, France
| | - Marius Blecher
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Marco Borghesi
- Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK
| | - Konstantin Burdonov
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - Dimitri Khaghani
- GSI (Gesellschaft für Schwerionenforschung) Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Kealan Naughton
- Centre for Plasma Physics, Queen’s University of Belfast, Belfast BT7 1NN, UK
| | - Henri Pépin
- INRS-EMT (Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunication), Varennes, Québec, Canada
| | - Oliver Portugall
- LNCMI (Laboratoire National des Champs Magnétiques Intenses), UPR 3228, CNRS-UGA-UPS-INSA, Toulouse 31400, France
| | - Raphael Riquier
- LULI (Laboratoire pour l’Utilisation des Lasers Intenses)–CNRS, École Polytechnique; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France
- CEA, DAM, DIF (Commissariat à l’Energie Atomique Energie Atomique, Direction des Applications Militaires Île de France), 91297 Arpajon, France
| | - Rafael Rodriguez
- Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain
| | - Sergei N. Ryazantsev
- Joint Institute for High Temperatures, RAS (Russian Academy of Sciences), Moscow 125412, Russia
| | - Igor Yu. Skobelev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
- Joint Institute for High Temperatures, RAS (Russian Academy of Sciences), Moscow 125412, Russia
| | - Alexander Soloviev
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - Oswald Willi
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sergey Pikuz
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
- Joint Institute for High Temperatures, RAS (Russian Academy of Sciences), Moscow 125412, Russia
| | - Andrea Ciardi
- Sorbonne Universités, UPMC Paris 06, Observatoire de Paris, PSL (Paris Sciences et Lettre) Research University, CNRS, UMR 8112, LERMA (Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique), F-75005 Paris, France
| | - Julien Fuchs
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
- LULI (Laboratoire pour l’Utilisation des Lasers Intenses)–CNRS, École Polytechnique; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France
| |
Collapse
|
9
|
Yu X, Xi W, Liu Z, Kuang Y, Li H, Fu X, Liu X, Xu W, Song Y, Wu S. Design of a 150T pulsed magnetic field generator device. FUSION ENGINEERING AND DESIGN 2017. [DOI: 10.1016/j.fusengdes.2017.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Kaymak V, Pukhov A, Shlyaptsev VN, Rocca JJ. Nanoscale Ultradense Z-Pinch Formation from Laser-Irradiated Nanowire Arrays. PHYSICAL REVIEW LETTERS 2016; 117:035004. [PMID: 27472120 DOI: 10.1103/physrevlett.117.035004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 06/06/2023]
Abstract
We show that ultradense Z pinches with nanoscale dimensions can be generated by irradiating aligned nanowires with femtosecond laser pulses of relativistic intensity. Using fully three-dimensional relativistic particle-in-cell simulations, we demonstrate that the laser pulse drives a forward electron current in the area around the wires. This forward current induces return current densities of ∼0.1 GA per μm^{2} through the wires. The resulting strong, quasistatic, self-generated azimuthal magnetic field pinches the nanowires into hot plasmas with a peak electron density of >9×10^{24} cm^{-3}, exceeding 1000 times the critical density. Arrays of these new ultradense nanopinches can be expected to lead to efficient microfusion and other applications.
Collapse
Affiliation(s)
- Vural Kaymak
- Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Pukhov
- Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Vyacheslav N Shlyaptsev
- Department of Electrical Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jorge J Rocca
- Department of Electrical Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Physics, Colorado State University, Fort Collins, Colorado 80513, USA
| |
Collapse
|
11
|
Faenov AY, Colgan J, Hansen SB, Zhidkov A, Pikuz TA, Nishiuchi M, Pikuz SA, Skobelev IY, Abdallah J, Sakaki H, Sagisaka A, Pirozhkov AS, Ogura K, Fukuda Y, Kanasaki M, Hasegawa N, Nishikino M, Kando M, Watanabe Y, Kawachi T, Masuda S, Hosokai T, Kodama R, Kondo K. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci Rep 2015; 5:13436. [PMID: 26330230 PMCID: PMC4557088 DOI: 10.1038/srep13436] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10(21) W/cm(2) is efficiently converted to X-ray radiation, which is emitted by "hot" electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E(4-5) of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10(17) W/cm(2), there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.
Collapse
Affiliation(s)
- A Ya Faenov
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - J Colgan
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S B Hansen
- Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - A Zhidkov
- PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia.,PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Nishiuchi
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - S A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia.,National Research Nuclear University (MEPhI), Moscow 115409, Russia
| | - I Yu Skobelev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia.,National Research Nuclear University (MEPhI), Moscow 115409, Russia
| | - J Abdallah
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - H Sakaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - A Sagisaka
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - A S Pirozhkov
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - K Ogura
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - Y Fukuda
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - M Kanasaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - N Hasegawa
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - M Nishikino
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - M Kando
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - Y Watanabe
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan
| | - T Kawachi
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| | - S Masuda
- PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Hosokai
- PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - R Kodama
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,PPC and Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - K Kondo
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
| |
Collapse
|
12
|
Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen SN, Cowan TE, Herrmannsdörfer T, Higginson DP, Kroll F, Pikuz SA, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt HP, Skobelev IY, Faenov AY, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pépin H, Fuchs J. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 2014; 346:325-8. [PMID: 25324383 DOI: 10.1126/science.1259694] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.
Collapse
Affiliation(s)
- B Albertazzi
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France. Institut National de la Recherche Scientifique-Energie, Matériaux, Télécommunications (INRS-EMT), Varennes, Québec, Canada. Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - A Ciardi
- Sorbonne Universités, UPMC Université. Paris 06, UMR 8112, Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique (LERMA), F-75005 Paris, France. Observatoire de Paris and CNRS, UMR 8112, LERMA, Paris, France
| | - M Nakatsutsumi
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - T Vinci
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - J Béard
- Laboratoire National des Champs magnétiques Intenses (LNCMI), UPR 3228, CNRS-Université Joseph Fourier (UJF)-Université Paul Sabatier (UPS)-Institut National des Sciences Appliquées (INSA), F-31400 Toulouse, France
| | - R Bonito
- Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento, I-1 90134 Palermo, Italy. National Institute for Astrophysics (INAF)-Osservatorio Astronomico di Palermo, Piazza del Parlamento, I-1 90134 Palermo, Italy
| | - J Billette
- Laboratoire National des Champs magnétiques Intenses (LNCMI), UPR 3228, CNRS-Université Joseph Fourier (UJF)-Université Paul Sabatier (UPS)-Institut National des Sciences Appliquées (INSA), F-31400 Toulouse, France
| | - M Borghesi
- School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, UK. Institute of Physics of the Academy of Science of the Czech Republic (ASCR), Extreme Light Infrastructure (ELI)-Beamlines Project, Na Slovance 2, 18221 Prague, Czech Republic
| | - Z Burkley
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - S N Chen
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - T E Cowan
- Technische Universität Dresden, D-01062 Dresden, Germany. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - T Herrmannsdörfer
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - D P Higginson
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - F Kroll
- Technische Universität Dresden, D-01062 Dresden, Germany. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - S A Pikuz
- Joint Institute for High Temperatures Russian Academy of Science (RAS), Moscow 125412, Russia. National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - K Naughton
- School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN, UK
| | - L Romagnani
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - C Riconda
- Sorbonne Universités, UPMC Université Paris 06, UMR 7605, LULI, F-75005 Paris, France
| | - G Revet
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France
| | - R Riquier
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France. CEA-Bruyères le Chatel, F-91297 Arpajon, France
| | - H-P Schlenvoigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - I Yu Skobelev
- Joint Institute for High Temperatures Russian Academy of Science (RAS), Moscow 125412, Russia
| | - A Ya Faenov
- Joint Institute for High Temperatures Russian Academy of Science (RAS), Moscow 125412, Russia. Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - A Soloviev
- Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - M Huarte-Espinosa
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA. Center for Advanced Computing and Data Systems, University of Houston, Houston, TX 77204, USA
| | - A Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - O Portugall
- Laboratoire National des Champs magnétiques Intenses (LNCMI), UPR 3228, CNRS-Université Joseph Fourier (UJF)-Université Paul Sabatier (UPS)-Institut National des Sciences Appliquées (INSA), F-31400 Toulouse, France
| | - H Pépin
- Institut National de la Recherche Scientifique-Energie, Matériaux, Télécommunications (INRS-EMT), Varennes, Québec, Canada
| | - J Fuchs
- Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France. Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia.
| |
Collapse
|
13
|
Yurchak R, Ravasio A, Pelka A, Pikuz S, Falize E, Vinci T, Koenig M, Loupias B, Benuzzi-Mounaix A, Fatenejad M, Tzeferacos P, Lamb DQ, Blackman EG. Experimental demonstration of an inertial collimation mechanism in nested outflows. PHYSICAL REVIEW LETTERS 2014; 112:155001. [PMID: 24785042 DOI: 10.1103/physrevlett.112.155001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 06/03/2023]
Abstract
Interaction between a central outflow and a surrounding wind is common in astrophysical sources powered by accretion. Understanding how the interaction might help to collimate the inner central outflow is of interest for assessing astrophysical jet formation paradigms. In this context, we studied the interaction between two nested supersonic plasma flows generated by focusing a long-pulse high-energy laser beam onto a solid target. A nested geometry was created by shaping the energy distribution at the focal spot with a dedicated phase plate. Optical and x-ray diagnostics were used to study the interacting flows. Experimental results and numerical hydrodynamic simulations indeed show the formation of strongly collimated jets. Our work experimentally confirms the "shock-focused inertial confinement" mechanism proposed in previous theoretical astrophysics investigations.
Collapse
Affiliation(s)
- R Yurchak
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - A Ravasio
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - A Pelka
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - S Pikuz
- Joint Institute for High Temperatures RAS, 13-2 Izhorskaya street, Moscow 125412, Russia
| | - E Falize
- CEA-DAM-DIF, F-91297 Arpajon, France
| | - T Vinci
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - M Koenig
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - B Loupias
- CEA-DAM-DIF, F-91297 Arpajon, France
| | - A Benuzzi-Mounaix
- LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau, France
| | - M Fatenejad
- Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637, USA
| | - P Tzeferacos
- Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637, USA
| | - D Q Lamb
- Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637, USA
| | - E G Blackman
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
14
|
Albertazzi B, Béard J, Ciardi A, Vinci T, Albrecht J, Billette J, Burris-Mog T, Chen SN, Da Silva D, Dittrich S, Herrmannsdörfer T, Hirardin B, Kroll F, Nakatsutsumi M, Nitsche S, Riconda C, Romagnagni L, Schlenvoigt HP, Simond S, Veuillot E, Cowan TE, Portugall O, Pépin H, Fuchs J. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:043505. [PMID: 23635194 DOI: 10.1063/1.4795551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.
Collapse
Affiliation(s)
- B Albertazzi
- LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|