1
|
Sarvaharman S, Giuggioli L. Particle-environment interactions in arbitrary dimensions: A unifying analytic framework to model diffusion with inert spatial heterogeneities. PHYSICAL REVIEW RESEARCH 2023; 5:physrevresearch.5.043281. [PMID: 40297495 PMCID: PMC7617621 DOI: 10.1103/physrevresearch.5.043281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Inert interactions between randomly moving entities and spatial disorder play a crucial role in quantifying the diffusive properties of a system, with examples ranging from molecules advancing along dendritic spines to antipredator displacements of animals due to sparse vegetation. Despite the ubiquity of such phenomena, a general framework to model the movement explicitly in the presence of spatial heterogeneities is missing. Here, we tackle this challenge and develop an analytic theory to model inert particle-environment interactions in domains of arbitrary shape and dimensions. We use a discrete space formulation, which allows us to model the interactions between an agent and the environment as perturbed dynamics between lattice sites. Interactions from spatial disorder, such as impenetrable and permeable obstacles or regions of increased or decreased diffusivity, as well as many others, can be modelled using our framework. We provide exact expressions for the generating function of the occupation probability of the diffusing particle and related transport quantities such as first-passage, return, and exit probabilities and their respective means. We uncover a surprising property, the disorder indifference phenomenon of the mean first-passage time in the presence of a permeable barrier in quasi-1D systems. We demonstrate the widespread applicability of our formalism by considering three examples that span across scales and disciplines. (1) We explore an enhancement strategy of transdermal drug delivery. (2) We represent the movement decisions of an animal undergoing thigomotaxis, the tendency to remain at the peripheries of its enclosure, using a spatially disordered environment. (3) We illustrate the use of spatial heterogeneities to model inert interactions between particles by modeling the search for a promoter region on the DNA by transcription factors during gene transcription.
Collapse
Affiliation(s)
- Seeralan Sarvaharman
- School of Engineering Mathematics and Technology, University of Bristol, BristolBS8 1TW, United Kingdom
| | - Luca Giuggioli
- School of Engineering Mathematics and Technology, University of Bristol, BristolBS8 1TW, United Kingdom
| |
Collapse
|
2
|
Riascos AP, Sanders DP. Mean encounter times for multiple random walkers on networks. Phys Rev E 2021; 103:042312. [PMID: 34005853 DOI: 10.1103/physreve.103.042312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.
Collapse
Affiliation(s)
- Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David P Sanders
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Le Vot F, Yuste SB, Abad E, Grebenkov DS. First-encounter time of two diffusing particles in confinement. Phys Rev E 2020; 102:032118. [PMID: 33076026 DOI: 10.1103/physreve.102.032118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
We investigate how confinement may drastically change both the probability density of the first-encounter time and the associated survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on two one-dimensional settings: a half-line and an interval. We first consider the case with equal particle diffusivities, for which exact results can be obtained for the survival probability and the associated first-encounter time density valid over the full time domain. We also evaluate the moments of the first-encounter time when they exist. We then turn to the case with unequal diffusivities and focus on the long-time behavior of the survival probability. Our results highlight the great impact of boundary effects in diffusion-controlled kinetics even for simple one-dimensional settings, as well as the difficulty of obtaining analytic results as soon as the translational invariance of such systems is broken.
Collapse
Affiliation(s)
- F Le Vot
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx) Universidad de Extremadura, E-06071 Badajoz, Spain
| | - E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx) Centro Universitario de Mérida Universidad de Extremadura, E-06800 Mérida, Spain
| | - D S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France and Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
How range residency and long-range perception change encounter rates. J Theor Biol 2020; 498:110267. [PMID: 32275984 DOI: 10.1016/j.jtbi.2020.110267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Encounter rates link movement strategies to intra- and inter-specific interactions, and therefore translate individual movement behavior into higher-level ecological processes. Indeed, a large body of interacting population theory rests on the law of mass action, which can be derived from assumptions of Brownian motion in an enclosed container with exclusively local perception. These assumptions imply completely uniform space use, individual home ranges equivalent to the population range, and encounter dependent on movement paths actually crossing. Mounting empirical evidence, however, suggests that animals use space non-uniformly, occupy home ranges substantially smaller than the population range, and are often capable of nonlocal perception. Here, we explore how these empirically supported behaviors change pairwise encounter rates. Specifically, we derive novel analytical expressions for encounter rates under Ornstein-Uhlenbeck motion, which features non-uniform space use and allows individual home ranges to differ from the population range. We compare OU-based encounter predictions to those of Reflected Brownian Motion, from which the law of mass action can be derived. For both models, we further explore how the interplay between the scale of perception and home-range size affects encounter rates. We find that neglecting realistic movement and perceptual behaviors can lead to systematic, non-negligible biases in encounter-rate predictions.
Collapse
|
5
|
Jackson CR, Groom RJ, Jordan NR, McNutt JW. The effect of relatedness and pack size on territory overlap in African wild dogs. MOVEMENT ECOLOGY 2017; 5:10. [PMID: 28417004 PMCID: PMC5392232 DOI: 10.1186/s40462-017-0099-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog (Lycaon pictus) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). RESULTS On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. CONCLUSIONS Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.
Collapse
Affiliation(s)
- Craig R. Jackson
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Sluppen, PO Box 5685, NO-7485 Trondheim, Norway
| | - Rosemary J. Groom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- African Wildlife Conservation Fund, Savé Valley Conservancy, Harare, Zimbabwe
| | - Neil R. Jordan
- Botswana Predator Conservation Trust, Maun, Botswana
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
- Taronga Conservation Society Australia, Taronga Western Plains Zoo, Wildlife Reproduction Centre, Obley Road, Dubbo, NSW 2830 Australia
| | | |
Collapse
|
6
|
Zhong LX, Xu WJ, Chen RD, Qiu T, Shi YD, Zhong CY. Coupled effects of local movement and global interaction on contagion. PHYSICA A 2015; 436:482-491. [PMID: 32288092 PMCID: PMC7125621 DOI: 10.1016/j.physa.2015.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/29/2015] [Indexed: 06/11/2023]
Abstract
By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we propose a generalized epidemic model which can change from the territorial epidemic model to the networked epidemic model. The role of the individual-based linkage between different spatial domains is investigated. As we adjust the timescale parameter τ from 0 to unity, which represents the degree of activation of the individual-based linkage, three regions are found. Within the region of 0 < τ < 0.02 , the epidemic is determined by local movement and is sensitive to the timescale τ . Within the region of 0.02 < τ < 0.5 , the epidemic is insensitive to the timescale τ . Within the region of 0.5 < τ < 1 , the outbreak of the epidemic is determined by the structure of the individual-based linkage. As we keep an eye on the first region, the role of activating the individual-based linkage in the present model is similar to the role of the shortcuts in the two-dimensional small world network. Only activating a small number of the individual-based linkage can prompt the outbreak of the epidemic globally. The role of narrowing segregated spatial domain and reducing mobility in epidemic control is checked. These two measures are found to be conducive to curbing the spread of infectious disease only when the global interaction is suppressed. A log-log relation between the change in the number of infected individuals and the timescale τ is found. By calculating the epidemic threshold and the mean first encounter time, we heuristically analyze the microscopic characteristics of the propagation of the epidemic in the present model.
Collapse
Affiliation(s)
- Li-Xin Zhong
- School of Finance and Coordinated Innovation Center of Wealth Management and Quantitative Investment, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
- School of Economics and Management, Tsinghua University, Beijing, 100084, China
| | - Wen-Juan Xu
- School of Law, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
| | - Rong-Da Chen
- School of Finance and Coordinated Innovation Center of Wealth Management and Quantitative Investment, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
| | - Tian Qiu
- School of Information Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong-Dong Shi
- Research Center of Applied Finance, Dongbei University of Finance and Economics, Dalian, 116025, China
| | | |
Collapse
|
7
|
Tzou JC, Xie S, Kolokolnikov T. First-passage times, mobile traps, and Hopf bifurcations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062138. [PMID: 25615075 DOI: 10.1103/physreve.90.062138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 06/04/2023]
Abstract
For a random walk on a confined one-dimensional domain, we consider mean first-passage times (MFPT) in the presence of a mobile trap. The question we address is whether a mobile trap can improve capture times over a stationary trap. We consider two scenarios: a randomly moving trap and an oscillating trap. In both cases, we find that a stationary trap actually performs better (in terms of reducing expected capture time) than a very slowly moving trap; however, a trap moving sufficiently fast performs better than a stationary trap. We explicitly compute the thresholds that separate the two regimes. In addition, we find a surprising relation between the oscillating trap problem and a moving-sink problem that describes reduced dynamics of a single spike in a certain regime of the Gray-Scott model. Namely, the above-mentioned threshold corresponds precisely to a Hopf bifurcation that induces oscillatory motion in the location of the spike. We use this correspondence to prove the uniqueness of the Hopf bifurcation.
Collapse
Affiliation(s)
- Justin C Tzou
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| | - Shuangquan Xie
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| | - Theodore Kolokolnikov
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| |
Collapse
|
8
|
Giuggioli L, Kenkre VM. Consequences of animal interactions on their dynamics: emergence of home ranges and territoriality. MOVEMENT ECOLOGY 2014; 2:20. [PMID: 25709829 PMCID: PMC4337768 DOI: 10.1186/s40462-014-0020-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/08/2014] [Indexed: 05/31/2023]
Abstract
Animal spacing has important implications for population abundance, species demography and the environment. Mechanisms underlying spatial segregation have their roots in the characteristics of the animals, their mutual interaction and their response, collective as well as individual, to environmental variables. This review describes how the combination of these factors shapes the patterns we observe and presents a practical, usable framework for the analysis of movement data in confined spaces. The basis of the framework is the theory of interacting random walks and the mathematical description of out-of-equilibrium systems. Although our focus is on modelling and interpreting animal home ranges and territories in vertebrates, we believe further studies on invertebrates may also help to answer questions and resolve unanswered puzzles that are still inaccessible to experimental investigation in vertebrate species.
Collapse
Affiliation(s)
- Luca Giuggioli
- />Bristol Centre for Complexity Sciences, Department of Engineering Mathematics and School of Biological Sciences, University of Bristol, Bristol, BS8 1UB UK
| | - V M Kenkre
- />Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico, Albuquerque, 87131 New Mexico USA
| |
Collapse
|
9
|
Potts JR, Bastille-Rousseau G, Murray DL, Schaefer JA, Lewis MA. Predicting local and non-local effects of resources on animal space use using a mechanistic step selection model. Methods Ecol Evol 2014; 5:253-262. [PMID: 25834721 PMCID: PMC4375923 DOI: 10.1111/2041-210x.12150] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
Predicting space use patterns of animals from their interactions with the environment is fundamental for understanding the effect of habitat changes on ecosystem functioning. Recent attempts to address this problem have sought to unify resource selection analysis, where animal space use is derived from available habitat quality, and mechanistic movement models, where detailed movement processes of an animal are used to predict its emergent utilization distribution. Such models bias the animal's movement towards patches that are easily available and resource-rich, and the result is a predicted probability density at a given position being a function of the habitat quality at that position. However, in reality, the probability that an animal will use a patch of the terrain tends to be a function of the resource quality in both that patch and the surrounding habitat.We propose a mechanistic model where this non-local effect of resources naturally emerges from the local movement processes, by taking into account the relative utility of both the habitat where the animal currently resides and that of where it is moving. We give statistical techniques to parametrize the model from location data and demonstrate application of these techniques to GPS location data of caribou (Rangifer tarandus) in Newfoundland.Steady-state animal probability distributions arising from the model have complex patterns that cannot be expressed simply as a function of the local quality of the habitat. In particular, large areas of good habitat are used more intensively than smaller patches of equal quality habitat, whereas isolated patches are used less frequently. Both of these are real aspects of animal space use missing from previous mechanistic resource selection models.Whilst we focus on habitats in this study, our modelling framework can be readily used with any environmental covariates and therefore represents a unification of mechanistic modelling and step selection approaches to understanding animal space use.
Collapse
Affiliation(s)
- Jonathan R Potts
- Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, AB, T6G 1G1, Canada
| | | | - Dennis L Murray
- Environmental and Life Sciences Graduate Program, Trent University Peterborough, ON K9J 7B8, Canada
| | - James A Schaefer
- Environmental and Life Sciences Graduate Program, Trent University Peterborough, ON K9J 7B8, Canada
| | - Mark A Lewis
- Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, AB, T6G 1G1, Canada ; Department of Biological Sciences, University of Alberta Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
10
|
Abstract
Collective animal behavior studies have led the way in developing models that account for a large number of individuals, but mostly have considered situations in which alignment and attraction play a key role, such as in schooling and flocking. By quantifying how animals react to one another's presence, when interaction is via conspecific avoidance rather than alignment or attraction, we present a mechanistic insight that enables us to link individual behavior and space use patterns. As animals respond to both current and past positions of their neighbors, the assumption that the relative location of individuals is statistically and history independent is not tenable, underscoring the limitations of traditional space use studies. We move beyond that assumption by constructing a framework to analyze spatial segregation of mobile animals when neighbor proximity may elicit a retreat, and by linking conspecific encounter rate to history-dependent avoidance behavior. Our approach rests on the knowledge that animals communicate by modifying the environment in which they live, providing a method to analyze social cohesion as stigmergy, a form of mediated animal-animal interaction. By considering a population of animals that mark the terrain as they move, we predict how the spatiotemporal patterns that emerge depend on the degree of stigmergy of the interaction processes. We find in particular that nonlocal decision rules may generate a nonmonotonic dependence of the animal encounter rate as a function of the tendency to retreat from locations recently visited by other conspecifics, which has fundamental implications for epidemic disease spread and animal sociality.
Collapse
|