1
|
Zhang WY, Hu LX, Cao Y, Shao FQ, Yu TP. Generation of attosecond electron bunches of tunable duration and density by relativistic vortex lasers in near-critical density plasma. OPTICS EXPRESS 2024; 32:16398-16413. [PMID: 38859267 DOI: 10.1364/oe.521360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Attosecond electron bunches have wide application prospects in free-electron laser injection, attosecond X/γ-ray generation, ultrafast physics, etc. Nowadays, there is one notable challenge in the generation of high-quality attosecond electron bunch, i.e., how to enhance the electron bunch density. Using theoretical analysis and three-dimensional particle-in-cell simulations, we discovered that a relativistic vortex laser pulse interacting with near-critical density plasma can not only effectively concentrate the attosecond electron bunches to over critical density, but also control the duration and density of the electron bunches by tuning the intensity and carrier-envelope phase of the drive laser. It is demonstrated that this method can efficiently produce attosecond electron bunches with a density up to 300 times of the original plasma density, peak divergence angle of less than 0.5 ∘, and duration of less than 67 attoseconds. Furthermore, by using near-critical density plasma instead of solid targets, our scheme is potential for the generation of high-repetition-frequency attosecond electron bunches, thus reducing the requirements for experiments, such as the beam alignment or target supporter.
Collapse
|
2
|
Rehwald M, Assenbaum S, Bernert C, Brack FE, Bussmann M, Cowan TE, Curry CB, Fiuza F, Garten M, Gaus L, Gauthier M, Göde S, Göthel I, Glenzer SH, Huang L, Huebl A, Kim JB, Kluge T, Kraft S, Kroll F, Metzkes-Ng J, Miethlinger T, Loeser M, Obst-Huebl L, Reimold M, Schlenvoigt HP, Schoenwaelder C, Schramm U, Siebold M, Treffert F, Yang L, Ziegler T, Zeil K. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density. Nat Commun 2023; 14:4009. [PMID: 37419912 DOI: 10.1038/s41467-023-39739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.
Collapse
Affiliation(s)
- Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Garten
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ilja Göthel
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Lingen Huang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Josefine Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas Miethlinger
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marvin Reimold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Christopher Schoenwaelder
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Franziska Treffert
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| |
Collapse
|
3
|
Rovige L, Huijts J, Vernier A, Andriyash I, Sylla F, Tomkus V, Girdauskas V, Raciukaitis G, Dudutis J, Stankevic V, Gecys P, Faure J. Symmetric and asymmetric shocked gas jets for laser-plasma experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083302. [PMID: 34470418 DOI: 10.1063/5.0051173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Shocks in supersonic flows offer both high density and sharp density gradients that are used, for instance, for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axisymmetric section at the end of a supersonic "de Laval" nozzle. The effect of different parameters, such as the throat diameter and straight section length on the shock position and density, is studied through computational fluid dynamics (CFD) simulations. Experimental characterizations of a shocked nozzle are compared to CFD simulations and found to be in good agreement. We then introduce a newly designed asymmetric shocked gas jet, where the straight section is only present on one lateral side of the nozzle, thus providing a gas profile well adapted for density transition injection. In this case, full-3D fluid simulations and experimental measurements are compared and show excellent agreement.
Collapse
Affiliation(s)
- L Rovige
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bv des Maréchaux, 91762 Palaiseau, France
| | - J Huijts
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bv des Maréchaux, 91762 Palaiseau, France
| | - A Vernier
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bv des Maréchaux, 91762 Palaiseau, France
| | - I Andriyash
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bv des Maréchaux, 91762 Palaiseau, France
| | - F Sylla
- SourceLAB, 7 rue de la Croix Martre, 91120 Palaiseau, France
| | - V Tomkus
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - V Girdauskas
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - G Raciukaitis
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - J Dudutis
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - V Stankevic
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - P Gecys
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - J Faure
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bv des Maréchaux, 91762 Palaiseau, France
| |
Collapse
|
4
|
High-Density Dynamics of Laser Wakefield Acceleration from Gas Plasmas to Nanotubes. PHOTONICS 2021. [DOI: 10.3390/photonics8060216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electron dynamics of laser wakefield acceleration (LWFA) is examined in the high-density regime using particle-in-cell simulations. These simulations model the electron source as a target of carbon nanotubes. Carbon nanotubes readily allow access to near-critical densities and may have other advantageous properties for potential medical applications of electron acceleration. In the near-critical density regime, electrons are accelerated by the ponderomotive force followed by the electron sheath formation, resulting in a flow of bulk electrons. This behavior represents a qualitatively distinct regime from that of low-density LWFA. A quantitative entropy index for differentiating these regimes is proposed. The dependence of accelerated electron energy on laser amplitude is also examined. For the majority of this study, the laser propagates along the axis of the target of carbon nanotubes in a 1D geometry. After the fundamental high-density physics is established, an alternative, 2D scheme of laser acceleration of electrons using carbon nanotubes is considered.
Collapse
|
5
|
Abstract
The versatility of laser accelerators in generating particle beams of various types is often promoted as a key applicative advantage. These multiple types of particles, however, are generated on vastly different irradiation setups, so that switching from one type to another involves substantial mechanical changes. In this letter, we report on a laser-based accelerator that generates beams of either multi-MeV electrons or ions from the same thin-foil irradiation setup. Switching from generation of ions to electrons is achieved by introducing an auxiliary laser pulse, which pre-explodes the foil tens of ns before irradiation by the main pulse. We present an experimental characterization of the emitted beams in terms of energy, charge, divergence, and repeatability, and conclude with several examples of prospective applications for industry and research.
Collapse
|
6
|
Henares JL, Puyuelo-Valdes P, Hannachi F, Ceccotti T, Ehret M, Gobet F, Lancia L, Marquès JR, Santos JJ, Versteegen M, Tarisien M. Development of gas jet targets for laser-plasma experiments at near-critical density. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063302. [PMID: 31254995 DOI: 10.1063/1.5093613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Computational fluid dynamics simulations are performed to design gas nozzles, associated with a 1000 bars backing pressure system, capable of generating supersonic gas jet targets with densities close to the critical density for 1053 nm laser radiation (1021 cm-3). Such targets should be suitable for laser-driven ion acceleration at a high repetition rate. The simulation results are compared to the density profiles measured by interferometry, and characterization of the gas jet dynamics is performed using strioscopy. Proton beams with maximum energies up to 2 MeV have been produced from diatomic hydrogen gas jet targets in a first experiment.
Collapse
Affiliation(s)
- J L Henares
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| | - P Puyuelo-Valdes
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| | - F Hannachi
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| | - T Ceccotti
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - M Ehret
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, 33400 Talence, France
| | - F Gobet
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| | - L Lancia
- LULI, Ecole Polytechnique-CNRS-CEA-Université Paris VI, F-91128 Palaiseau, France
| | - J-R Marquès
- LULI, Ecole Polytechnique-CNRS-CEA-Université Paris VI, F-91128 Palaiseau, France
| | - J J Santos
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, 33400 Talence, France
| | - M Versteegen
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| | - M Tarisien
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, 33175 Gradignan, France
| |
Collapse
|
7
|
Henares JL, Tarisien M, Puyuelo P, Marquès JR, Nguyen-Bui T, Gobet F, Raymond X, Versteegen M, Hannachi F. Optimization of critical-density gas jet targets for laser ion acceleration in the collisionless shockwave acceleration regime. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1079/1/012004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Woodbury D, Feder L, Shumakova V, Gollner C, Schwartz R, Miao B, Salehi F, Korolov A, Pugžlys A, Baltuška A, Milchberg HM. Laser wakefield acceleration with mid-IR laser pulses. OPTICS LETTERS 2018; 43:1131-1134. [PMID: 29489797 DOI: 10.1364/ol.43.001131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
We report on, to the best of our knowledge, the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared (IR) laser pulses (λ=3.9 μm, 100 fs, 0.25 TW), which enable near- and above-critical density interactions with moderate-density gas jets. Relativistic electron acceleration up to ∼12 MeV occurs when the jet width exceeds the threshold scale length for relativistic self-focusing. We present scaling trends in the accelerated beam profiles, charge, and spectra, which are supported by particle-in-cell simulations and time-resolved images of the interaction. For similarly scaled conditions, we observe significant increases in the accelerated charge, compared to previous experiments with near-infrared (λ=800 nm) pulses.
Collapse
|
9
|
Abstract
Petawatt lasers are now available in a number of facilities around the world and are becoming a very useful tool in physics and engineering. Some of such lasers are able -or will be able soon- to fire at high repetition rates (one shot per second or more). Experiments at such repetition rates have certain peculiarities that are to be briefly exposed here, based on the author’s experience with the Salamanca VEGA-3 laser. VEGA-3 is a 30 fs PW laser, firing one shot per second.
Collapse
|
10
|
Kahaly S, Sylla F, Lifschitz A, Flacco A, Veltcheva M, Malka V. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma. Sci Rep 2016; 6:31647. [PMID: 27531755 PMCID: PMC4987697 DOI: 10.1038/srep31647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/22/2016] [Indexed: 11/15/2022] Open
Abstract
Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies.
Collapse
Affiliation(s)
- S Kahaly
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France.,ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged 6720, Hungary
| | - F Sylla
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France.,SourceLAB SAS, 86 rue de Paris, F-91400 Orsay, France
| | - A Lifschitz
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France
| | - A Flacco
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France
| | - M Veltcheva
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France
| | - V Malka
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France
| |
Collapse
|
11
|
Goers AJ, Hine GA, Feder L, Miao B, Salehi F, Wahlstrand JK, Milchberg HM. Multi-MeV Electron Acceleration by Subterawatt Laser Pulses. PHYSICAL REVIEW LETTERS 2015; 115:194802. [PMID: 26588390 DOI: 10.1103/physrevlett.115.194802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 06/05/2023]
Abstract
We demonstrate laser-plasma acceleration of high charge electron beams to the ∼10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ∼0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wave breaking, which can radiate more than ∼3% of the laser energy in a ∼1 fs bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.
Collapse
Affiliation(s)
- A J Goers
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - G A Hine
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - L Feder
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - B Miao
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - F Salehi
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - J K Wahlstrand
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - H M Milchberg
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
12
|
Huang TW, Zhou CT, Robinson APL, Qiao B, Zhang H, Wu SZ, Zhuo HB, Norreys PA, He XT. Mitigating the relativistic laser beam filamentation via an elliptical beam profile. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:053106. [PMID: 26651801 DOI: 10.1103/physreve.92.053106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 06/05/2023]
Abstract
It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations.
Collapse
Affiliation(s)
- T W Huang
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - C T Zhou
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
- Science College, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - A P L Robinson
- Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - B Qiao
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - H Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - S Z Wu
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - H B Zhuo
- Science College, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - P A Norreys
- Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - X T He
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| |
Collapse
|