1
|
Zeng J, Xie WQ, Zhao Y. Variational Approach to Entangled Non-Hermitian Open Systems. J Chem Theory Comput 2025; 21:3857-3866. [PMID: 40181239 DOI: 10.1021/acs.jctc.5c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The pseudomode model effectively captures the nonperturbative dynamics of open quantum systems with significantly reduced degrees of freedom. However, it is limited by the exponential growth of the Hilbert space dimension. To overcome the computational challenges, we propose a novel method that combines the multiple Davydov Ansatz with the Choi-Jamiolkowski isomorphism. Within this framework, the Lindblad equation is transformed into the non-Hermitian Schrödinger equation in a double Hilbert space, with its dynamics determined using the time-dependent variational principle. Three cases are calculated to demonstrate the effectiveness of the proposed method. We first discuss how the Davydov Ansatz works for the model with a single pseudomode. Extending the method to multiple pseudomodes, we show that the Ansatz effectively circumvents the exponential growth of the Hilbert space. Additionally, the method is also capable of addressing potential intersections that emerge in multibath scenarios. This approach offers potential applicability to various types of pseudomode models and other dissipative systems, providing a promising tool for the studies of open quantum dynamics.
Collapse
Affiliation(s)
- Jiarui Zeng
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Wen-Qiang Xie
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Lacerda AM, Kewming MJ, Brenes M, Jackson C, Clark SR, Mitchison MT, Goold J. Entropy production in the mesoscopic-leads formulation of quantum thermodynamics. Phys Rev E 2024; 110:014125. [PMID: 39160916 DOI: 10.1103/physreve.110.014125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Understanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation. Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths. In this method, a set of discretized lead modes, each locally damped, provide a Markovian embedding. Here we show that this method proves extremely useful to describe entropy production of a strongly coupled open quantum system. We show numerically, for both noninteracting and interacting setups, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding. This allows us to use various results from the thermodynamics of quantum dynamical semigroups to infer the nonequilibrium thermodynamics of the strongly coupled, non-Markovian central systems. In particular, we show that the entropy production in the transient regime recovers the well-established microscopic definitions of entropy production with a correction that can be computed explicitly for both the single- and multiple-lead cases.
Collapse
Affiliation(s)
| | | | - Marlon Brenes
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George St., Toronto, Ontario, Canada, M5S 1A7
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José 11501, Costa Rica
- Escuela de Física, Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| |
Collapse
|
3
|
Künzel F, Erpenbeck A, Werner D, Arrigoni E, Gull E, Cohen G, Eckstein M. Numerically Exact Simulation of Photodoped Mott Insulators. PHYSICAL REVIEW LETTERS 2024; 132:176501. [PMID: 38728727 DOI: 10.1103/physrevlett.132.176501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address exponentially separated timescales. We demonstrate how properties of such states can be computed using numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a time-local ansatz for the distribution function with separate Fermi functions for the electron and hole quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the photodoped state has hole and electron quasiparticles with strongly renormalized properties.
Collapse
Affiliation(s)
- Fabian Künzel
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
| | - André Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel Werner
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Enrico Arrigoni
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Martin Eckstein
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
4
|
Motazedifard A, Dalafi A, Naderi MH. Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes. OPTICS EXPRESS 2023; 31:36615-36637. [PMID: 38017809 DOI: 10.1364/oe.499409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
We propose an experimentally feasible optomechanical scheme to realize a negative cavity photon spectral function (CPSF) which is equivalent to a negative absorption. The system under consideration is an optomechanical system consisting of two mechanical (phononic) modes which are linearly coupled to a common cavity mode via the radiation pressure while parametrically driven through the coherent time-modulation of their spring coefficients. Using the equations of motion for the cavity retarded Green's function obtained in the framework of the generalized linear response theory, we show that in the red-detuned and weak-coupling regimes a frequency-dependent effective cavity damping rate (ECDR) corresponding to a negative CPSF can be realized by controlling the cooperativities and modulation parameters while the system still remains in the stable regime. Nevertheless, such a negativity which acts as an optomechanical gain never occurs in a standard (an unmodulated bare) cavity optomechanical system. Besides, we find that the presence of two modulated mechanical degrees of freedom provides more controllability over the magnitude and bandwidth of the negativity of CPSF, in comparison to the setup with a single modulated mechanical oscillator. Interestingly, the introduced negativity may open a new platform to realize an extraordinary (modified) optomechanically induced transparency (in which the input signal is amplified in the output) leading to a perfect tunable optomechanical filter with switchable bandwidth which can be used as an optical transistor.
Collapse
|
5
|
Erpenbeck A, Gull E, Cohen G. Quantum Monte Carlo Method in the Steady State. PHYSICAL REVIEW LETTERS 2023; 130:186301. [PMID: 37204908 DOI: 10.1103/physrevlett.130.186301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.
Collapse
Affiliation(s)
- A Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - E Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - G Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
7
|
Dan X, Xu M, Yan Y, Shi Q. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. J Chem Phys 2022; 156:134114. [PMID: 35395901 DOI: 10.1063/5.0086663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a set of generalized master equations (GMEs) to study charge transport dynamics in molecular junctions using the Nakajima-Zwanzig-Mori projection operator approach. In the new GME, time derivatives of population on each quantum state of the molecule, as well as the tunneling current, are calculated as the convolution of time non-local memory kernels with populations on all system states. The non-Markovian memory kernels are obtained by combining the hierarchical equations of motion (HEOM) method and a previous derived Dyson relation for the exact kernel. A perturbative expansion of these memory kernels is then calculated using the extended HEOM developed in our previous work [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. By using the resonant level model and the Anderson impurity model, we study properties of the exact memory kernels and analyze convergence properties of their perturbative expansions with respect to the system-bath coupling strength and the electron-electron repulsive energy. It is found that exact memory kernels calculated from HEOM exhibit short memory times and decay faster than the population and current dynamics. The high order perturbation expansion of the memory kernels can give converged results in certain parameter regimes. The Padé and Landau-Zener resummation schemes are also found to give improved results over low order perturbation theory.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Elenewski JE, Wójtowicz G, Rams MM, Zwolak M. Performance of reservoir discretizations in quantum transport simulations. J Chem Phys 2021; 155:124117. [PMID: 34598565 DOI: 10.1063/5.0065799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quantum transport simulations often use explicit, yet finite, electronic reservoirs. These should converge to the correct continuum limit, albeit with a trade-off between discretization and computational cost. Here, we study this interplay for extended reservoir simulations, where relaxation maintains a bias or temperature drop across the system. Our analysis begins in the non-interacting limit, where we parameterize different discretizations to compare them on an even footing. For many-body systems, we develop a method to estimate the relaxation that best approximates the continuum by controlling virtual transitions in Kramers turnover for the current. While some discretizations are more efficient for calculating currents, there is little benefit with regard to the overall state of the system. Any gains become marginal for many-body, tensor network simulations, where the relative performance of discretizations varies when sweeping other numerical controls. These results indicate that typical reservoir discretizations have little impact on numerical costs for certain computational tools. The choice of a relaxation parameter is nonetheless crucial, and the method we develop provides a reliable estimate of the optimal relaxation for finite reservoirs.
Collapse
Affiliation(s)
- Justin E Elenewski
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek M Rams
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
9
|
Lupo C, Jamet F, Tse WHT, Rungger I, Weber C. Maximally localized dynamical quantum embedding for solving many-body correlated systems. NATURE COMPUTATIONAL SCIENCE 2021; 1:410-420. [PMID: 38217238 DOI: 10.1038/s43588-021-00090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/21/2021] [Indexed: 01/15/2024]
Abstract
Quantum computing opens new avenues for modeling correlated materials, which are notoriously challenging to solve due to the presence of large electronic correlations. Quantum embedding approaches, such as dynamical mean-field theory, provide corrections to first-principles calculations for strongly correlated materials, which are poorly described at lower levels of theory. Such embedding approaches are computationally demanding on classical computing architectures and hence remain restricted to small systems, limiting the scope of their applicability. Hitherto, implementations on quantum computers have been limited by hardware constraints. Here, we derive a compact representation, where the number of quantum states is reduced for a given system while retaining a high level of accuracy. We benchmark our method for archetypal quantum states of matter that emerge due to electronic correlations, such as Kondo and Mott physics, both at equilibrium and for quenched systems. We implement this approach on a quantum emulator, demonstrating a reduction of the required number of qubits.
Collapse
Affiliation(s)
- Carla Lupo
- Theory & Simulation of Condensed Matter, King's College London, London, UK.
- National Physical Laboratory, Teddington, UK.
| | - François Jamet
- Theory & Simulation of Condensed Matter, King's College London, London, UK.
- National Physical Laboratory, Teddington, UK.
| | | | | | - Cedric Weber
- Theory & Simulation of Condensed Matter, King's College London, London, UK.
| |
Collapse
|
10
|
Zwolak M. Analytic expressions for the steady-state current with finite extended reservoirs. J Chem Phys 2020; 153:224107. [PMID: 33317280 PMCID: PMC8356363 DOI: 10.1063/5.0029223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Open-system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs," a collection of a finite number of degrees of freedom with relaxation that maintains a bias or temperature gradient, and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).
Collapse
Affiliation(s)
- Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
11
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Wójtowicz G, Elenewski JE, Rams MM, Zwolak M. Open System Tensor Networks and Kramers' Crossover for Quantum Transport. PHYSICAL REVIEW. A 2020; 101:10.1103/PhysRevA.101.050301. [PMID: 33367191 PMCID: PMC7754794 DOI: 10.1103/physreva.101.050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tensor networks are a powerful tool for many-body ground states with limited entanglement. These methods can nonetheless fail for certain time-dependent processes-such as quantum transport or quenches-where entanglement growth is linear in time. Matrix-product-state decompositions of the resulting out-of-equilibrium states require a bond dimension that grows exponentially, imposing a hard limit on simulation timescales. However, in the case of transport, if the reservoir modes of a closed system are arranged according to their scattering structure, the entanglement growth can be made logarithmic. Here, we apply this ansatz to open systems via extended reservoirs that have explicit relaxation. This enables transport calculations that can access steady states, time dynamics and noise, and periodic driving (e.g., Floquet states). We demonstrate the approach by calculating the transport characteristics of an open, interacting system. These results open a path to scalable and numerically systematic many-body transport calculations with tensor networks.
Collapse
Affiliation(s)
- Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Justin E. Elenewski
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
| | - Marek M. Rams
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
13
|
Ridley M, Gull E, Cohen G. Lead geometry and transport statistics in molecular junctions. J Chem Phys 2019; 150:244107. [DOI: 10.1063/1.5096244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Ridley
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Guy Cohen
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Chen F, Cohen G, Galperin M. Auxiliary Master Equation for Nonequilibrium Dual-Fermion Approach. PHYSICAL REVIEW LETTERS 2019; 122:186803. [PMID: 31144909 DOI: 10.1103/physrevlett.122.186803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 06/09/2023]
Abstract
We introduce an auxiliary quantum master equation dual fermion method and argue that it presents a convenient way to describe steady states of correlated impurity models. The scheme yields an expansion around a reference that is much closer to the true nonequilibrium state than that in the original dual fermion formulation. In steady-state situations, the scheme is numerically inexpensive and avoids time propagation. The Anderson impurity model is used to test the approach against numerically exact benchmarks.
Collapse
Affiliation(s)
- Feng Chen
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Sorantin ME, Fugger DM, Dorda A, von der Linden W, Arrigoni E. Auxiliary master equation approach within stochastic wave functions: Application to the interacting resonant level model. Phys Rev E 2019; 99:043303. [PMID: 31108647 DOI: 10.1103/physreve.99.043303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 06/09/2023]
Abstract
We present further developments of the auxiliary master equation approach (AMEA), a numerical method to simulate many-body quantum systems in as well as out of equilibrium and apply it to the interacting resonant level model to benchmark the new developments. In particular, our results are obtained by employing the stochastic wave functions method to solve the auxiliary open quantum system arising within AMEA. This development allows us to reach extremely low wall times for the calculation of correlation functions with respect to previous implementations of AMEA. An additional significant improvement is obtained by extrapolating a series of results obtained by increasing the number of auxiliary bath sites, N_{B}, used within the auxiliary open quantum system formally to the limit of N_{B}→∞. Results for the current-voltage characteristics and for equilibrium correlation functions are compared with the one obtained by exact and matrix-product states-based approaches. Further, we complement this benchmark by the presentation of spectral functions for higher temperatures where we find different behaviors around zero frequency depending on the hybridization strength.
Collapse
Affiliation(s)
- Max E Sorantin
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Delia M Fugger
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Antonius Dorda
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Wolfgang von der Linden
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Enrico Arrigoni
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
16
|
Okamoto S, Alvarez G, Dagotto E, Tohyama T. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures. Phys Rev E 2018; 97:043308. [PMID: 29758620 DOI: 10.1103/physreve.97.043308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 11/07/2022]
Abstract
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Collapse
Affiliation(s)
- Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gonzalo Alvarez
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Elbio Dagotto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Takami Tohyama
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
17
|
Ribeiro P, Zamani F, Kirchner S. Steady-State Dynamics and Effective Temperature for a Model of Quantum Criticality in an Open System. PHYSICAL REVIEW LETTERS 2015; 115:220602. [PMID: 26650286 DOI: 10.1103/physrevlett.115.220602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 06/05/2023]
Abstract
We study the thermal and nonthermal steady-state scaling functions and the steady-state dynamics of a model of local quantum criticality. The model we consider, i.e., the pseudogap Kondo model, allows us to study the concept of effective temperatures near fully interacting as well as weak-coupling fixed points. In the vicinity of each fixed point we establish the existence of an effective temperature-different at each fixed point-such that the equilibrium fluctuation-dissipation theorem is recovered. Most notably, steady-state scaling functions in terms of the effective temperatures coincide with the equilibrium scaling functions. This result extends to higher correlation functions as is explicitly demonstrated for the Kondo singlet strength. The nonlinear charge transport is also studied and analyzed in terms of the effective temperature.
Collapse
Affiliation(s)
- P Ribeiro
- Russian Quantum Center, Novaya street 100 A, Skolkovo, Moscow area, 143025 Russia and CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - F Zamani
- Max Planck Institute for Physics of Complex Systems, 01187 Dresden, Germany and Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - S Kirchner
- Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
18
|
Cohen G, Gull E, Reichman DR, Millis AJ. Green's functions from real-time bold-line Monte Carlo calculations: spectral properties of the nonequilibrium Anderson impurity model. PHYSICAL REVIEW LETTERS 2014; 112:146802. [PMID: 24766001 DOI: 10.1103/physrevlett.112.146802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 06/03/2023]
Abstract
The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Chemistry, Columbia University, New York, New York 10027, USA and Department of Physics, Columbia University, New York, New York 10027, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|