1
|
Wei Q, Wang W, Tang Y, Metzler R, Chechkin A. Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian motion, spurious nonergodicity, and aging. Phys Rev E 2025; 111:014128. [PMID: 39972787 DOI: 10.1103/physreve.111.014128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
We consider the fractional Langevin equation far from equilibrium (FLEFE) to describe stochastic dynamics which do not obey the fluctuation-dissipation theorem, unlike the conventional fractional Langevin equation (FLE). The solution of this equation is Riemann-Liouville fractional Brownian motion (RL-FBM), also known in the literature as FBM II. Spurious nonergodicity, stationarity, and aging properties of the solution are explored for all admissible values α>1/2 of the order α of the time-fractional Caputo derivative in the FLEFE. The increments of the process are asymptotically stationary. However when 1/2<α<3/2, the time-averaged mean-squared displacement (TAMSD) does not converge to the mean-squared displacement (MSD). Instead, it converges to the mean-squared increment (MSI) or structure function, leading to the phenomenon of spurious nonergodicity. When α≥3/2, the increments of FLEFE motion are nonergodic, however the higher order increments are asymptotically ergodic. We also discuss the aging effect in the FLEFE by investigating the influence of an aging time t_{a} on the MSD, TAMSD and autocovariance function of the increments. We find that under strong aging conditions the process becomes ergodic, and the increments become stationary in the domain 1/2<α<3/2.
Collapse
Affiliation(s)
- Qing Wei
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
| | - Wei Wang
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Yifa Tang
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
- University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing 100049, China
| | - Ralf Metzler
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Aleksei Chechkin
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wyspianskiego 27, 50-370 Wrocław, Poland
- Max Planck Institute of Microstructure Physics, German-Ukrainian Core of Excellence, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
2
|
Régnier L, Dolgushev M, Redner S, Bénichou O. Universal exploration dynamics of random walks. Nat Commun 2023; 14:618. [PMID: 36739291 PMCID: PMC9899275 DOI: 10.1038/s41467-023-36233-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The territory explored by a random walk is a key property that may be quantified by the number of distinct sites that the random walk visits up to a given time. We introduce a more fundamental quantity, the time τn required by a random walk to find a site that it never visited previously when the walk has already visited n distinct sites, which encompasses the full dynamics about the visitation statistics. To study it, we develop a theoretical approach that relies on a mapping with a trapping problem, in which the spatial distribution of traps is continuously updated by the random walk itself. Despite the geometrical complexity of the territory explored by a random walk, the distribution of the τn can be accounted for by simple analytical expressions. Processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes.
Collapse
Affiliation(s)
- Léo Régnier
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005, Paris, France
| | - Maxim Dolgushev
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005, Paris, France
| | - S Redner
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne University, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
3
|
Li J. Role of ergodicity, aging, and Gaussianity in resolving the origins of biomolecule subdiffusion. Phys Chem Chem Phys 2022; 24:16050-16057. [PMID: 35731614 DOI: 10.1039/d2cp01161a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The internal motions of biomolecules are essential to their function. Although biological macromolecules conventionally show subdiffusive dynamics, only recently has subdiffusion been associated with non-ergodicity. These findings have stimulated new questions in biophysics and statistical mechanics. Is non-ergodic subdiffusion a general strategy shared by biomolecules? What underlying mechanisms are responsible for it? Here, we performed extensive molecular dynamics (MD) simulations to characterize the internal dynamics of six different biomolecules, ranging from single or double-stranded DNA, a single domain protein (KRAS), two globular proteins (PGK and SHP2), to an intrinsically disordered protein (SNAP-25). We found that the subdiffusive behavior of these biomolecules falls into two classes. The internal motion of the first three cases is ergodic subdiffusion and can be interpreted by fractional Brownian motion (FBM), while the latter three cases involve non-ergodic subdiffusion and can be modeled by mixed origins of continuous-time random walk (CTRW) and FBM.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Zhang Z, Han Y, Chen WR, Do C. Diffusion characteristics of water molecules in a lamellar structure formed by triblock copolymers. Phys Chem Chem Phys 2022; 24:8015-8021. [PMID: 35315475 DOI: 10.1039/d2cp00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution and diffusion of water molecules are playing important roles in determining self-assembly and transport properties of polymeric systems. Small-angle neutron scattering (SANS) experiments and molecular dynamics (MD) simulation have been applied to understand the distribution of water molecules and their dynamics in the lamellar membrane formed by Pluronic L62 block copolymers. Penetration of water molecules into the polyethylene oxide (PEO) layers of the membranes has been estimated using scattering length density (SLD) profiles obtained from SANS measurements, which agree well with the molecular distribution observed from MD simulations. The water diffusion coefficient at different regions of the lamellar membrane was further investigated using MD simulation. The diffusion characteristic shows a transition from normal to anomalous diffusion as the position of the water molecule changes from the bulk to PEO and to the polypropylene oxide (PPO) layer. We find that water molecules within the PEO or PPO layers follow subdiffusive dynamics, which can be interpreted by the model of fractional Brownian motion.
Collapse
Affiliation(s)
- Zhe Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. .,Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge Tennessee, 37831, USA
| | - Youngkyu Han
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
5
|
Zunke C, Bewerunge J, Platten F, Egelhaaf SU, Godec A. First-passage statistics of colloids on fractals: Theory and experimental realization. SCIENCE ADVANCES 2022; 8:eabk0627. [PMID: 35061533 PMCID: PMC8782457 DOI: 10.1126/sciadv.abk0627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 05/30/2023]
Abstract
In nature and technology, particle dynamics frequently occur in complex environments, for example in restricted geometries or crowded media. These dynamics have often been modeled invoking a fractal structure of the medium although the fractal structure was only indirectly inferred through the dynamics. Moreover, systematic studies have not yet been performed. Here, colloidal particles moving in a laser speckle pattern are used as a model system. In this case, the experimental observations can be reliably traced to the fractal structure of the underlying medium with an adjustable fractal dimension. First-passage time statistics reveal that the particles explore the speckle in a self-similar, fractal manner at least over four decades in time and on length scales up to 20 times the particle radius. The requirements for fractal diffusion to be applicable are laid out, and methods to extract the fractal dimension are established.
Collapse
Affiliation(s)
- Christoph Zunke
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jörg Bewerunge
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing, Biomacromolecular Systems and Processes (IBI-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stefan U. Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Muñoz-Gil G, Volpe G, Garcia-March MA, Aghion E, Argun A, Hong CB, Bland T, Bo S, Conejero JA, Firbas N, Garibo I Orts Ò, Gentili A, Huang Z, Jeon JH, Kabbech H, Kim Y, Kowalek P, Krapf D, Loch-Olszewska H, Lomholt MA, Masson JB, Meyer PG, Park S, Requena B, Smal I, Song T, Szwabiński J, Thapa S, Verdier H, Volpe G, Widera A, Lewenstein M, Metzler R, Manzo C. Objective comparison of methods to decode anomalous diffusion. Nat Commun 2021; 12:6253. [PMID: 34716305 PMCID: PMC8556353 DOI: 10.1038/s41467-021-26320-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.
Collapse
Affiliation(s)
- Gorka Muñoz-Gil
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41296, Gothenburg, Sweden.
| | - Miguel Angel Garcia-March
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Erez Aghion
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - Aykut Argun
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41296, Gothenburg, Sweden
| | - Chang Beom Hong
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Tom Bland
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stefano Bo
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - J Alberto Conejero
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Nicolás Firbas
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Òscar Garibo I Orts
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Alessia Gentili
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Zihan Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Yeongjin Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Patrycja Kowalek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Hanna Loch-Olszewska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Michael A Lomholt
- PhyLife, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Jean-Baptiste Masson
- Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, F-75015, Paris, France
| | - Philipp G Meyer
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - Seongyu Park
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Borja Requena
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul, Korea
- Department of Data Information and Physics, Kongju National University, Kongju, 32588, Korea
| | - Janusz Szwabiński
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Samudrajit Thapa
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hippolyte Verdier
- Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, F-75015, Paris, France
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Maciej Lewenstein
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
| | - Carlo Manzo
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain.
- Facultat de Ciències i Tecnologia, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), C. de la Laura,13, 08500, Vic, Spain.
| |
Collapse
|
7
|
Wohl I, Sherman E. Reducing Myosin II and ATP-Dependent Mechanical Activity Increases Order and Stability of Intracellular Organelles. Int J Mol Sci 2021; 22:10369. [PMID: 34638710 PMCID: PMC8508806 DOI: 10.3390/ijms221910369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Organization of intracellular content is affected by multiple simultaneous processes, including diffusion in a viscoelastic and structured environment, intracellular mechanical work and vibrations. The combined effects of these processes on intracellular organization are complex and remain poorly understood. Here, we studied the organization and dynamics of a free Ca++ probe as a small and mobile tracer in live T cells. Ca++, highlighted by Fluo-4, is localized in intracellular organelles. Inhibiting intracellular mechanical work by myosin II through blebbistatin treatment increased cellular dis-homogeneity of Ca++-rich features in length scale < 1.1 μm. We detected a similar effect in cells imaged by label-free bright-field (BF) microscopy, in mitochondria-highlighted cells and in ATP-depleted cells. Blebbistatin treatment also reduced the dynamics of the Ca++-rich features and generated prominent negative temporal correlations in their signals. Following Guggenberger et al. and numerical simulations, we suggest that diffusion in the viscoelastic and confined medium of intracellular organelles may promote spatial dis-homogeneity and stability of their content. This may be revealed only after inhibiting intracellular mechanical work and related cell vibrations. Our described mechanisms may allow the cell to control its organization via balancing its viscoelasticity and mechanical activity, with implications to cell physiology in health and disease.
Collapse
Affiliation(s)
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel;
| |
Collapse
|
8
|
Wang W, Cherstvy AG, Kantz H, Metzler R, Sokolov IM. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes. Phys Rev E 2021; 104:024105. [PMID: 34525678 DOI: 10.1103/physreve.104.024105] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x)=D_{0}|x|^{γ} and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.
Collapse
Affiliation(s)
- Wei Wang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Holger Kantz
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
9
|
Wohl I, Sherman E. Spectral Analysis of ATP-Dependent Mechanical Vibrations in T Cells. Front Cell Dev Biol 2021; 9:590655. [PMID: 34178972 PMCID: PMC8222795 DOI: 10.3389/fcell.2021.590655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical vibrations affect multiple cell properties, including its diffusivity, entropy, internal content organization, and thus-function. Here, we used Differential Interference Contrast (DIC), confocal, and Total Internal Reflection Fluorescence (TIRF) microscopies to study mechanical vibrations in live (Jurkat) T cells. Vibrations were measured via the motion of intracellular particles and plasma membrane. These vibrations depend on adenosine triphosphate (ATP) consumption and on Myosin II activity. We then used spectral analysis of these vibrations to distinguish the effects of thermal agitation, ATP-dependent mechanical work and cytoskeletal visco-elasticity. Parameters of spectral analyses could be related to mean square displacement (MSD) analyses with specific advantages in characterizing intracellular mechanical work. We identified two spectral ranges where mechanical work dominated vibrations of intracellular components: 0-3 Hz for intracellular particles and the plasma-membrane, and 100-150 Hz for the plasma-membrane. The 0-3 Hz vibrations of the cell membrane that we measured in an experimental model of immune synapse (IS) are expected to affect the IS formation and function in effector cells. It may also facilitate immunological escape of extensively vibrating malignant cells.
Collapse
Affiliation(s)
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Levin M, Bel G, Roichman Y. Measurements and characterization of the dynamics of tracer particles in an actin network. J Chem Phys 2021; 154:144901. [PMID: 33858166 DOI: 10.1063/5.0045278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The underlying physics governing the diffusion of a tracer particle in a viscoelastic material is a topic of some dispute. The long-term memory in the mechanical response of such materials should induce diffusive motion with a memory kernel, such as fractional Brownian motion (fBM). This is the reason that microrheology is able to provide the shear modulus of polymer networks. Surprisingly, the diffusion of a tracer particle in a network of a purified protein, actin, was found to conform to the continuous time random walk type (CTRW). We set out to resolve this discrepancy by studying the tracer particle diffusion using two different tracer particle sizes, in actin networks of different mesh sizes. We find that the ratio of tracer particle size to the characteristic length scale of a bio-polymer network plays a crucial role in determining the type of diffusion it performs. We find that the diffusion of the tracer particles has features of fBm when the particle is large compared to the mesh size, of normal diffusion when the particle is much smaller than the mesh size, and of the CTRW in between these two limits. Based on our findings, we propose and verify numerically a new model for the motion of the tracer in all regimes. Our model suggests that diffusion in actin networks consists of fBm of the tracer particle coupled with caging events with power-law distributed escape times.
Collapse
Affiliation(s)
- Maayan Levin
- Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Golan Bel
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Yael Roichman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Jamali V, Hargus C, Ben-Moshe A, Aghazadeh A, Ha HD, Mandadapu KK, Alivisatos AP. Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. Proc Natl Acad Sci U S A 2021; 118:e2017616118. [PMID: 33658362 PMCID: PMC7958372 DOI: 10.1073/pnas.2017616118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial LC in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural-network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous-time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.
Collapse
Affiliation(s)
- Vida Jamali
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Cory Hargus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Assaf Ben-Moshe
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Amirali Aghazadeh
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
| | - Hyun Dong Ha
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Kavli Energy NanoScience Institute, Berkeley, CA 94720
| |
Collapse
|
12
|
Lapolla A, Godec A. Single-file diffusion in a bi-stable potential: Signatures of memory in the barrier-crossing of a tagged-particle. J Chem Phys 2020; 153:194104. [PMID: 33218229 DOI: 10.1063/5.0025785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate memory effects in barrier-crossing in the overdamped setting. We focus on the scenario where the hidden degrees of freedom relax on exactly the same time scale as the observable. As a prototypical model, we analyze tagged-particle diffusion in a single file confined to a bi-stable potential. We identify the signatures of memory and explain their origin. The emerging memory is a result of the projection of collective many-body eigenmodes onto the motion of a tagged-particle. We are interested in the "confining" (all background particles in front of the tagged-particle) and "pushing" (all background particles behind the tagged-particle) scenarios for which we find non-trivial and qualitatively different relaxation behaviors. Notably and somewhat unexpectedly, at a fixed particle number, we find that the higher the barrier, the stronger the memory effects are. The fact that the external potential alters the memory is important more generally and should be taken into account in applications of generalized Langevin equations. Our results can readily be tested experimentally and may be relevant for understanding transport in biological ion-channels.
Collapse
Affiliation(s)
- Alessio Lapolla
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Kuśmierz Ł, Gudowska-Nowak E. Subdiffusive continuous-time random walks with stochastic resetting. Phys Rev E 2019; 99:052116. [PMID: 31212503 DOI: 10.1103/physreve.99.052116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 06/09/2023]
Abstract
We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk scheme and independent resetting events generated uniformly in time according to the Poisson point process. In the first model the whole process is reset to the initial state, whereas in the second model only the position is subject to resets. The distinction between these two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics. We also show, with an example of a constant drift, how these models can be generalized to include external forces. Possible applications to data analysis and modeling of biological systems are also discussed.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ewa Gudowska-Nowak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland and Mark Kac Complex Systems Research Center, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
14
|
Peng J, Agliari E. Exact results for the first-passage properties in a class of fractal networks. CHAOS (WOODBURY, N.Y.) 2019; 29:023105. [PMID: 30823739 DOI: 10.1063/1.5080481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In this work, we consider a class of recursively grown fractal networks Gn(t) whose topology is controlled by two integer parameters, t and n. We first analyse the structural properties of Gn(t) (including fractal dimension, modularity, and clustering coefficient), and then we move to its transport properties. The latter are studied in terms of first-passage quantities (including the mean trapping time, the global mean first-passage time, and Kemeny's constant), and we highlight that their asymptotic behavior is controlled by the network's size and diameter. Remarkably, if we tune n (or, analogously, t) while keeping the network size fixed, as n increases (t decreases) the network gets more and more clustered and modular while its diameter is reduced, implying, ultimately, a better transport performance. The connection between this class of networks and models for polymer architectures is also discussed.
Collapse
Affiliation(s)
- Junhao Peng
- School of Math and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Elena Agliari
- Department of Mathematics, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
15
|
Mardoukhi Y, Jeon JH, Chechkin AV, Metzler R. Fluctuations of random walks in critical random environments. Phys Chem Chem Phys 2018; 20:20427-20438. [PMID: 30043029 DOI: 10.1039/c8cp03212b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Percolation networks have been widely used in the description of porous media but are now found to be relevant to understand the motion of particles in cellular membranes or the nucleus of biological cells. Random walks on the infinite cluster at criticality of a percolation network are asymptotically ergodic. On any finite size cluster of the network stationarity is reached at finite times, depending on the cluster's size. Despite of this we here demonstrate by combination of analytical calculations and simulations that at criticality the disorder and cluster size average of the ensemble of clusters leads to a non-vanishing variance of the time averaged mean squared displacement, regardless of the measurement time. Fluctuations of this relevant experimental quantity due to the disorder average of such ensembles are thus persistent and non-negligible. The relevance of our results for single particle tracking analysis in complex and biological systems is discussed.
Collapse
Affiliation(s)
- Yousof Mardoukhi
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
16
|
De Vos O, Venable RM, Van Hecke T, Hummer G, Pastor RW, Ghysels A. Membrane Permeability: Characteristic Times and Lengths for Oxygen and a Simulation-Based Test of the Inhomogeneous Solubility-Diffusion Model. J Chem Theory Comput 2018; 14:3811-3824. [PMID: 29894626 DOI: 10.1021/acs.jctc.8b00115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The balance of normal and radial (lateral) diffusion of oxygen in phospholipid membranes is critical for biological function. Based on the Smoluchowski equation for the inhomogeneous solubility-diffusion model, Bayesian analysis (BA) can be applied to molecular dynamics trajectories of oxygen to extract the free energy and the normal and radial diffusion profiles. This paper derives a theoretical formalism to convert these profiles into characteristic times and lengths associated with entering, escaping, or completely crossing the membrane. The formalism computes mean first passage times and holds for any process described by rate equations between discrete states. BA of simulations of eight model membranes with varying lipid composition and temperature indicate that oxygen travels 3 to 5 times further in the radial than in the normal direction when crossing the membrane in a time of 15 to 32 ns, thereby confirming the anisotropy of passive oxygen transport in membranes. Moreover, the preceding times and distances estimated from the BA are compared to the aggregate of 280 membrane exits explicitly observed in the trajectories. BA predictions for the distances of oxygen radial diffusion within the membrane are statistically indistinguishable from the corresponding simulation values, yet BA oxygen exit times from the membrane interior are approximately 20% shorter than the simulation values, averaged over seven systems. The comparison supports the BA approach and, therefore, the applicability of the Smoluchowski equation to membrane diffusion. Given the shorter trajectories required for the BA, these results validate the BA as a computationally attractive alternative to direct observation of exits when estimating characteristic times and radial distances. The effect of collective membrane undulations on the BA is also discussed.
Collapse
Affiliation(s)
- Oriana De Vos
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| | - Richard M Venable
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Tanja Van Hecke
- Department of Information Technology , Ghent University , 9000 Gent , Belgium
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany.,Institute for Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Richard W Pastor
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - An Ghysels
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| |
Collapse
|
17
|
Cherstvy AG, Nagel O, Beta C, Metzler R. Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. Phys Chem Chem Phys 2018; 20:23034-23054. [DOI: 10.1039/c8cp04254c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells?
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Oliver Nagel
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Carsten Beta
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
18
|
Lanoiselée Y, Grebenkov DS. Unraveling intermittent features in single-particle trajectories by a local convex hull method. Phys Rev E 2017; 96:022144. [PMID: 28950648 DOI: 10.1103/physreve.96.022144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/01/2023]
Abstract
We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France and Interdisciplinary Scientific Center Poncelet (ISCP), Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
19
|
Sikora G, Teuerle M, Wyłomańska A, Grebenkov D. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement. Phys Rev E 2017; 96:022132. [PMID: 28950534 DOI: 10.1103/physreve.96.022132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 06/07/2023]
Abstract
The most common way of estimating the anomalous scaling exponent from single-particle trajectories consists of a linear fit of the dependence of the time-averaged mean-square displacement on the lag time at the log-log scale. We investigate the statistical properties of this estimator in the case of fractional Brownian motion (FBM). We determine the mean value, the variance, and the distribution of the estimator. Our theoretical results are confirmed by Monte Carlo simulations. In the limit of long trajectories, the estimator is shown to be asymptotically unbiased, consistent, and with vanishing variance. These properties ensure an accurate estimation of the scaling exponent even from a single (long enough) trajectory. As a consequence, we prove that the usual way to estimate the diffusion exponent of FBM is correct from the statistical point of view. Moreover, the knowledge of the estimator distribution is the first step toward new statistical tests of FBM and toward a more reliable interpretation of the experimental histograms of scaling exponents in microbiology.
Collapse
Affiliation(s)
- Grzegorz Sikora
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marek Teuerle
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Wyłomańska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Denis Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|
20
|
Abstract
The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes. Membrane protein diffusion is affected by distinct mechanisms such as molecular crowding and medium elasticity. Here the authors present an analytical approach to analyse single particle trajectories and distinguish mixed subdiffusive processes affecting membrane protein mobility in living cells.
Collapse
|
21
|
|
22
|
Jain R, Sebastian KL. Diffusing diffusivity: Rotational diffusion in two and three dimensions. J Chem Phys 2017; 146:214102. [PMID: 28576093 PMCID: PMC5453791 DOI: 10.1063/1.4984085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αrot,2D and αrot,3D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.
Collapse
Affiliation(s)
- Rohit Jain
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K L Sebastian
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Xu L, Wang G, Jiang L, Chen J, Huang G, Zhang Z. Distinguishing Liquid from Solid by Atom Transport Coefficient Distribution: Predicting Melting Point of Ionic Liquids as an Example. ChemistrySelect 2017. [DOI: 10.1002/slct.201700309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liancai Xu
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| | - Guoqing Wang
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| | - Ling Jiang
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| | - Junli Chen
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| | - Gailing Huang
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering; Zhengzhou University of Light Industry, Zhengzhou; Henan 450002 China PRC
| |
Collapse
|
24
|
Taheriyoun AR, Moghimbeygi M. Visual information and expert's idea in Hurst index estimation of the fractional Brownian motion using a diffusion type approximation. Sci Rep 2017; 7:42482. [PMID: 28195153 PMCID: PMC5307349 DOI: 10.1038/srep42482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/11/2017] [Indexed: 12/02/2022] Open
Abstract
An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied.
Collapse
Affiliation(s)
- Ali R Taheriyoun
- Shahid Beheshti University, G.C., Department of Statistics, Tehran, 1983969411, Iran
| | - Meisam Moghimbeygi
- Shahid Beheshti University, G.C., Department of Statistics, Tehran, 1983969411, Iran
| |
Collapse
|
25
|
Lysy M, Pillai NS, Hill DB, Forest MG, Mellnik JWR, Vasquez PA, McKinley SA. Model Comparison and Assessment for Single Particle Tracking in Biological Fluids. J Am Stat Assoc 2017. [DOI: 10.1080/01621459.2016.1158716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Natesh S. Pillai
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Gregory Forest
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Paula A. Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
26
|
Sadegh S, Higgins JL, Mannion PC, Tamkun MM, Krapf D. Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork. PHYSICAL REVIEW. X 2017; 7:011031. [PMID: 28690919 PMCID: PMC5500227 DOI: 10.1103/physrevx.7.011031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized because of experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data confirm that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar meshwork. These results present a hierarchical nanoscale picture of the plasma membrane.
Collapse
Affiliation(s)
- Sanaz Sadegh
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jenny L. Higgins
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Patrick C. Mannion
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
27
|
Lanoiselée Y, Grebenkov DS. Revealing nonergodic dynamics in living cells from a single particle trajectory. Phys Rev E 2016; 93:052146. [PMID: 27300868 DOI: 10.1103/physreve.93.052146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 06/06/2023]
Abstract
We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
28
|
Erickson AM, Henry BI, Murray JM, Klasse PJ, Angstmann CN. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion. Biophys J 2016; 109:164-72. [PMID: 26153713 DOI: 10.1016/j.bpj.2015.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/01/2023] Open
Abstract
Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data.
Collapse
Affiliation(s)
- Austen M Erickson
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Bruce I Henry
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - John M Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York
| | | |
Collapse
|
29
|
Mardoukhi Y, Jeon JH, Metzler R. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Phys Chem Chem Phys 2015; 17:30134-47. [PMID: 26503611 DOI: 10.1039/c5cp03548a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.
Collapse
Affiliation(s)
- Yousof Mardoukhi
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
30
|
Backlund MP, Joyner R, Moerner WE. Chromosomal locus tracking with proper accounting of static and dynamic errors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062716. [PMID: 26172745 PMCID: PMC4533921 DOI: 10.1103/physreve.91.062716] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 05/13/2023]
Abstract
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object's motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics ("static error") and motion blur due to finite exposure time ("dynamic error") on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors.
Collapse
Affiliation(s)
- Mikael P. Backlund
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| | - Ryan Joyner
- Department of Cell and Developmental Biology, University of California, Berkeley, California, 94720, USA
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| |
Collapse
|
31
|
Ernst D, Köhler J, Weiss M. Probing the type of anomalous diffusion with single-particle tracking. Phys Chem Chem Phys 2015; 16:7686-91. [PMID: 24651929 DOI: 10.1039/c4cp00292j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.
Collapse
Affiliation(s)
- Dominique Ernst
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
32
|
Fedotov S, Korabel N. Subdiffusion in an external potential: Anomalous effects hiding behind normal behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042112. [PMID: 25974444 DOI: 10.1103/physreve.91.042112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 06/04/2023]
Abstract
We propose a model of subdiffusion in which an external force is acting on a particle at all times not only at the moment of jump. The implication of this assumption is the dependence of the random trapping time on the force with the dramatic change of particles behavior compared to the standard continuous time random walk model in the long time limit. Constant force leads to the transition from non-ergodic subdiffusion to ergodic diffusive behavior. However, we show this behavior remains anomalous in a sense that the diffusion coefficient depends on the external force and on the anomalous exponent. For quadratic potential we find that the system remains non-ergodic. The anomalous exponent in this case defines not only the speed of convergence but also the stationary distribution which is different from standard Boltzmann equilibrium.
Collapse
Affiliation(s)
- Sergei Fedotov
- School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
33
|
Colomb W, Sarkar SK. Extracting physics of life at the molecular level: A review of single-molecule data analyses. Phys Life Rev 2015; 13:107-37. [PMID: 25660417 DOI: 10.1016/j.plrev.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
34
|
Cherstvy AG, Metzler R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012134. [PMID: 25122278 DOI: 10.1103/physreve.90.012134] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Indexed: 06/03/2023]
Abstract
We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼ |x|(α) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - R Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany and Department of Physics, Tampere University of Technology, 33101 Tampere, Finland
| |
Collapse
|
35
|
Papo D. Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci 2014; 8:112. [PMID: 24966818 PMCID: PMC4052734 DOI: 10.3389/fnsys.2014.00112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/26/2014] [Indexed: 11/15/2022] Open
Abstract
Behavioral studies have shown that human cognition is characterized by properties such as temporal scale invariance, heavy-tailed non-Gaussian distributions, and long-range correlations at long time scales, suggesting models of how (non observable) components of cognition interact. On the other hand, results from functional neuroimaging studies show that complex scaling and intermittency may be generic spatio-temporal properties of the brain at rest. Somehow surprisingly, though, hardly ever have the neural correlates of cognition been studied at time scales comparable to those at which cognition shows scaling properties. Here, we analyze the meanings of scaling properties and the significance of their task-related modulations for cognitive neuroscience. It is proposed that cognitive processes can be framed in terms of complex generic properties of brain activity at rest and, ultimately, of functional equations, limiting distributions, symmetries, and possibly universality classes characterizing them.
Collapse
Affiliation(s)
- David Papo
- Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid Madrid, Spain
| |
Collapse
|
36
|
Calderon CP, Weiss LE, Moerner WE. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052705. [PMID: 25353827 DOI: 10.1103/physreve.89.052705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 06/04/2023]
Abstract
Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x,y (or x,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).
Collapse
Affiliation(s)
| | - Lucien E Weiss
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
37
|
Lucena D, Galván-Moya JE, Ferreira WP, Peeters FM. Single-file and normal diffusion of magnetic colloids in modulated channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032306. [PMID: 24730841 DOI: 10.1103/physreve.89.032306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 06/03/2023]
Abstract
Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J E Galván-Moya
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil
| | - F M Peeters
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
38
|
Bologna M, West BJ, Grigolini P. Renewal and memory origin of anomalous diffusion: a discussion of their joint action. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062106. [PMID: 24483385 DOI: 10.1103/physreve.88.062106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Indexed: 06/03/2023]
Abstract
The adoption of the formalism of fractional calculus is an elegant way to simulate either subdiffusion or superdiffusion from within a renewal perspective where the occurrence of an event at a given time t does not have any memory of the events occurring at earlier times. We illustrate a physical model to assign infinite memory to renewal anomalous diffusion and we find (i) a condition where the simultaneous action of a renewal and a memory source of subdiffusion generates localization and (ii) a condition where they make subdiffusion weaker and superdiffusion emerge. We argue that our approach may provide important contributions to the current search to distinguish the renewal from the memory source of subdiffusion.
Collapse
Affiliation(s)
- Mauro Bologna
- Instituto de Alta Investigación, Universidad de Tarapacá-Casilla 6-D Arica, Chile
| | - Bruce J West
- Information Science Directorate, Army Research Office, Research Triangle Park, North Carolina 27709, USA
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| |
Collapse
|
39
|
|
40
|
Weiss M. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:010101. [PMID: 23944389 DOI: 10.1103/physreve.88.010101] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Indexed: 06/02/2023]
Abstract
Anomalous diffusion with a sublinear growth of the particles' mean-square displacement (subdiffusion) has been observed frequently in crowded fluids, e.g., in the cytoplasm of living cells or in artificial solutions. Based on a recently reported set of single-particle tracking data, it is shown here that trajectories of nanoparticles immersed in artificial crowded fluids display all signatures of anticorrelated fractional Brownian motion. Moreover, the trajectories' power spectrum follows a scaling that reports on the fluid's viscoelasticity. Macromolecular crowding therefore renders fluids viscoelastic which in turn leads to subdiffusion of immersed tracer particles with all the characteristics of fractional Brownian motion.
Collapse
Affiliation(s)
- Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany.
| |
Collapse
|
41
|
Akimoto T, Miyaguchi T. Distributional ergodicity in stored-energy-driven Lévy flights. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062134. [PMID: 23848654 DOI: 10.1103/physreve.87.062134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 06/02/2023]
Abstract
We study a class of random walk, the stored-energy-driven Lévy flight (SEDLF), whose jump length is determined by a stored energy during a trapped state. The SEDLF is a continuous-time random walk with jump lengths being coupled with the trapping times. It is analytically shown that the ensemble-averaged mean-square displacements exhibit subdiffusion as well as superdiffusion, depending on the coupling parameter. We find that time-averaged mean-square displacements increase linearly with time and the diffusion coefficients are intrinsically random, a manifestation of distributional ergodicity. The diffusion coefficient shows aging in subdiffusive regime, whereas it increases with the measurement time in superdiffusive regime.
Collapse
Affiliation(s)
- Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan.
| | | |
Collapse
|
42
|
Cherstvy AG, Metzler R. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys Chem Chem Phys 2013; 15:20220-35. [DOI: 10.1039/c3cp53056f] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|