1
|
Makarov DN, Eseev MK, Gusarevich ES, Makarova KA, Borisov MS. Ultrashort pulses in structural analysis of diamond layers with angstrom resolution. OPTICS LETTERS 2025; 50:694-697. [PMID: 39815595 DOI: 10.1364/ol.546635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
X-ray crystallography is commonly used to determine crystal structures, whether continuous or ultrashort x rays are used. In this paper, it is shown that using only ultrashort pulses, it is possible to determine interplanar spacing in diamond layers, the distance between which can be only a few angstroms. The results obtained can be extended, with further development of the presented theory, to determine 3D objects in the crystal structure, the dimensions of which can be only a few angstroms.
Collapse
|
2
|
Schaap BH, Smorenburg PW, Luiten OJ. Isolated attosecond X-ray pulses from superradiant thomson scattering by a relativistic chirped electron mirror. Sci Rep 2022; 12:19727. [PMID: 36396752 PMCID: PMC9672037 DOI: 10.1038/s41598-022-24288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractTime-resolved investigation of electron dynamics relies on the generation of isolated attosecond pulses in the (soft) X-ray regime. Thomson scattering is a source of high energy radiation of increasing prevalence in modern labs, complementing large scale facilities like undulators and X-ray free electron lasers. We propose a scheme to generate isolated attosecond X-ray pulses based on Thomson scattering by colliding microbunched electrons on a chirped laser pulse. The electrons collectively act as a relativistic chirped mirror, which superradiantly reflects the laser pulse into a single localized beat. As such, this technique extends chirped pulse compression, developed for radar and applied in optics, to the X-ray regime. In this paper we theoretically show that, by using this approach, attosecond soft X-ray pulses with GW peak power can be generated from pC electron bunches at tens of MeV electron beam energy. While we propose the generation of few cycle X-ray pulses on a table-top system, the theory is universally scalable over the electromagnetic spectrum.
Collapse
|
3
|
Morgan J, McNeil BWJ. X-ray pulse generation with ultra-fast flipping of its orbital angular momentum. OPTICS EXPRESS 2022; 30:31171-31181. [PMID: 36242205 DOI: 10.1364/oe.470503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
A method to temporally tailor the properties of X-ray radiation carrying Orbital Angular Momentum (OAM) is presented. In simulations, an electron beam is prepared with a temporally modulated micro-bunching structure which, when radiating at the second harmonic in a helical undulator, generates OAM light with a corresponding temporally modulated intensity. This method is shown to generate attosecond pulse trains of OAM light without the need for any additional external optics, making the wavelength range tunable. In addition to the OAM pulse train, the method can be adapted to generate radiation where the handedness of the OAM mode may also be temporally modulated (flipped).
Collapse
|
4
|
Yong H, Cavaletto SM, Mukamel S. Ultrafast Valence-Electron Dynamics in Oxazole Monitored by X-ray Diffraction Following a Stimulated X-ray Raman Excitation. J Phys Chem Lett 2021; 12:9800-9806. [PMID: 34606289 DOI: 10.1021/acs.jpclett.1c02740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct imaging of the ultrafast quantum motion of valence electrons in molecules is essential for understanding many elementary chemical and physical processes. We present a simulation study of valence-electron dynamics of oxazole. A valence-state electronic wavepacket is prepared with an attosecond soft X-ray pulse through a stimulated resonant X-ray Raman process and then probed with time-resolved off-resonant single-molecule X-ray diffraction. We find that the time dependent diffraction signal originates solely from the electronic coherences and can be detected by existing experimental techniques. We thus provide a feasible way of imaging electron dynamics in molecules. Moreover, the created electronic coherences and subsequent electron dynamics can be manipulated by the resonant X-ray Raman excitation tuned to different core-excited states.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Duris JP, MacArthur JP, Glownia JM, Li S, Vetter S, Miahnahri A, Coffee R, Hering P, Fry A, Welch ME, Lutman A, Decker FJ, Bohler D, Mock JA, Xu C, Gumerlock K, May JE, Cedillos A, Kraft E, Carrasco MA, Smith BE, Chieffo LR, Xu JZ, Cryan JP, Huang Z, Zholents A, Marinelli A. Controllable X-Ray Pulse Trains from Enhanced Self-Amplified Spontaneous Emission. PHYSICAL REVIEW LETTERS 2021; 126:104802. [PMID: 33784160 DOI: 10.1103/physrevlett.126.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 μm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.
Collapse
Affiliation(s)
- Joseph P Duris
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P MacArthur
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James M Glownia
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Siqi Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sharon Vetter
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alan Miahnahri
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ryan Coffee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Philippe Hering
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alan Fry
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marc E Welch
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Dorian Bohler
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jeremy A Mock
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Chengcheng Xu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Karl Gumerlock
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Justin E May
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Antonio Cedillos
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eugene Kraft
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Manuel A Carrasco
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Brian E Smith
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Joseph Z Xu
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | |
Collapse
|
6
|
Simmermacher M, Moreno Carrascosa A, E. Henriksen N, B. Møller K, Kirrander A. Theory of ultrafast x-ray scattering by molecules in the gas phase. J Chem Phys 2019; 151:174302. [DOI: 10.1063/1.5110040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mats Simmermacher
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | | | - Niels E. Henriksen
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
7
|
Tanaka T, Rebernik Ribič P. Shortening the pulse duration in seeded free-electron lasers by chirped microbunching. OPTICS EXPRESS 2019; 27:30875-30892. [PMID: 31684330 DOI: 10.1364/oe.27.030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
In externally seeded free-electron lasers (FELs) that rely on a frequency upconversion scheme to generate intense short-wavelength light pulses, the slippage effect in the radiator imposes a lower limit on the FEL pulse duration, which is typically on the order of a few tens of femtoseconds. Recently it was proposed that a combination of a chirped microbunch and a tapered undulator can be used to break this limit. Although the method has the potential to reduce the FEL pulse duration down to a level that cannot be achieved by current state-of-the-art technology, it requires a very short seed pulse (∼ one optical cycle or less), making it challenging to put this concept into practical use. Here, we propose an alternative technique to relax the requirement on the seed pulse length. We show that the modified scheme allows generation of FEL pulses with durations much shorter than that determined by the seed pulse and the slippage effect. The performance of the method, which can easily be implemented at existing seeded FEL user facilities, is evaluated through a campaign of analytical calculations and simulations. For our set of typical seeded FEL parameters, we expect the generation of 1.6 fs long pulses at 26 nm with a peak power of 10 GW using a 20 fs long chirped seed pulse operating at 260 nm.
Collapse
|
8
|
Campbell LT, McNeil BWJ. Frequency modulated free electron laser. OPTICS EXPRESS 2019; 27:8792-8799. [PMID: 31052691 DOI: 10.1364/oe.27.008792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
It is shown that the output frequency of a free electron laser may be modulated to generate a series of modes that span a bandwidth of at least an order of magnitude greater than the normal FEL bandwidth. This new method of frequency modulated FEL operation has close analogies to frequency modulation in conventional cavity lasers. The FM-FEL is analysed and described in the linear regime by a summation over the exponentially amplified frequency modes. Simulations using a 3D, broad bandwidth, numerical code also demonstrate FM-FEL operation for parameters typical of FEL facilities currently under construction. Harmonic bunching methods are used to seed the FM-FEL modes to generate a temporally correlated frequency modulated output over a large bandwidth. This new, FM-FEL mode of operation scales well for X-ray generation, offering users a significantly new form of high-power, short wavelength FEL output.
Collapse
|
9
|
Mak A, Shamuilov G, Salén P, Dunning D, Hebling J, Kida Y, Kinjo R, McNeil BWJ, Tanaka T, Thompson N, Tibai Z, Tóth G, Goryashko V. Attosecond single-cycle undulator light: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:025901. [PMID: 30572315 DOI: 10.1088/1361-6633/aafa35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research at modern light sources continues to improve our knowledge of the natural world, from the subtle workings of life to matter under extreme conditions. Free-electron lasers, for instance, have enabled the characterization of biomolecular structures with sub-ångström spatial resolution, and paved the way to controlling the molecular functions. On the other hand, attosecond temporal resolution is necessary to broaden our scope of the ultrafast world. Here we discuss attosecond pulse generation beyond present capabilities. Furthermore, we review three recently proposed methods of generating attosecond x-ray pulses. These novel methods exploit the coherent radiation of microbunched electrons in undulators and the tailoring of the emitted wavefronts. The computed pulse energy outperforms pre-existing technologies by three orders of magnitude. Specifically, our simulations of the proposed Soft X-ray Laser at MAX IV (Lund, Sweden) show that a pulse duration of 50-100 as and a pulse energy up to 5 [Formula: see text]J is feasible with the novel methods. In addition, the methods feature pulse shape control, enable the incorporation of orbital angular momentum, and can be used in combination with modern compact free-electron laser setups.
Collapse
Affiliation(s)
- Alan Mak
- FREIA Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shamuilov G, Mak A, Salén P, Goryashko V. Analytical model of waveform-controlled single-cycle light pulses from an undulator. OPTICS LETTERS 2018; 43:819-822. [PMID: 29444002 DOI: 10.1364/ol.43.000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
This Letter builds upon a recent concept [Phys. Rev. Lett.113, 104801 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.104801] for producing ultrashort optical pulses through the coherent radiation of electrons in an undulator. Each pulse contains only a single oscillation cycle, and has a controlled waveform (and hence a stable carrier-envelope phase). While the concept had been demonstrated numerically, this Letter provides an analytical model for the radiation mechanism, thereby revealing three key observations: (i) the correlation between the waveforms of the optical and undulator fields; (ii) the free-space dispersion of transversely confined light; and (iii) the dependence of the optical pulse shape on the undulator field strength.
Collapse
|
11
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang S, Ding Y, Feng Y, Hemsing E, Huang Z, Krzywinski J, Lutman AA, Marinelli A, Maxwell TJ, Zhu D. Generating Single-Spike Hard X-Ray Pulses with Nonlinear Bunch Compression in Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2017; 119:154801. [PMID: 29077438 DOI: 10.1103/physrevlett.119.154801] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 05/07/2023]
Abstract
A simple method for generating single-spike hard x-ray pulses in free-electron lasers (FELs) has been developed at the Linac Coherent Light Source (LCLS). This is realized by nonlinear bunch compression using 20-pC bunch charge, demonstrated in the hard x-ray regime at 5.6 and 9 keV, respectively. Measurements show about half of the FEL shots containing a single-spike spectrum. At 5.6-keV photon energy, the single-spike shots have a mean pulse energy of about 10 μJ with 70% intensity fluctuation and the pulse full width at half maximum is evaluated to be at 200-as level.
Collapse
Affiliation(s)
- S Huang
- Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Y Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Feng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Hemsing
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Z Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Krzywinski
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T J Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Zhu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
13
|
Simmermacher M, Henriksen NE, Møller KB. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp01831b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper demonstrates how the time-dependent scattering signal of electronic wave packets in the hydrogen atom can be expressed analytically.
Collapse
Affiliation(s)
- Mats Simmermacher
- Department of Chemistry
- Technical University of Denmark
- 2800 Lyngby
- Denmark
| | - Niels E. Henriksen
- Department of Chemistry
- Technical University of Denmark
- 2800 Lyngby
- Denmark
| | - Klaus B. Møller
- Department of Chemistry
- Technical University of Denmark
- 2800 Lyngby
- Denmark
| |
Collapse
|
14
|
Tóth G, Tibai Z, Nagy-Csiha Z, Márton Z, Almási G, Hebling J. Circularly polarized carrier-envelope-phase stable attosecond pulse generation based on coherent undulator radiation. OPTICS LETTERS 2015; 40:4317-4320. [PMID: 26371925 DOI: 10.1364/ol.40.004317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this Letter, we present a new method for generation of circularly polarized attosecond pulses. According to our calculations, shape-controlled, carrier-envelope-phase stable pulses of several hundred nanojoule energy could be produced by exploitation of the coherent undulator radiation of an electron bunch. Our calculations are based on an existing particle accelerator system (FLASH II in DESY, Germany). We investigated the energy dependence of the attosecond pulses on the energy of electrons and the parameters of the radiator undulator, which generate the electromagnetic radiation.
Collapse
|
15
|
Tanaka T. Proposal to generate an isolated monocycle x-ray pulse by counteracting the slippage effect in free-electron lasers. PHYSICAL REVIEW LETTERS 2015; 114:044801. [PMID: 25679895 DOI: 10.1103/physrevlett.114.044801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 06/04/2023]
Abstract
A novel scheme is proposed to generate an isolated monocycle x-ray pulse in free-electron lasers, which is based on coherent emission from a chirped microbunch passing through a strongly tapered undulator. In this scheme, the pulse lengthening by optical slippage, being intrinsic to the lasing process of free-electron lasers, can be effectively suppressed through destructive interference of electromagnetic waves emitted at individual undulator periods. Calculations show that an isolated monocycle x-ray pulse with a wavelength of 8.6 nm and a peak power of 1.2 GW can be generated if this scheme is applied to a 2-GeV and 2-kA electron beam.
Collapse
Affiliation(s)
- Takashi Tanaka
- RIKEN SPring-8 Center, Koto 1-1-1, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
16
|
Tibai Z, Tóth G, Mechler MI, Fülöp JA, Almási G, Hebling J. Proposal for carrier-envelope-phase stable single-cycle attosecond pulse generation in the extreme-ultraviolet range. PHYSICAL REVIEW LETTERS 2014; 113:104801. [PMID: 25238363 DOI: 10.1103/physrevlett.113.104801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Indexed: 06/03/2023]
Abstract
A robust method for producing half-cycle-few-cycle attosecond pulses in the extreme ultraviolet spectral range is proposed. It is based on coherent undulator radiation of relativistic ultrathin electron layers (nanobunches), which are produced by nanobunching of ultrashort electron bunches by a 10-TW power laser in a modulator undulator. Our numerical calculations predict the generation of nanobunches shorter than 10 nm. By using these electron nanobunches the production of carrier-envelope-phase stable attosecond pulses with up to a few tens of nJ energy and down to 10 nm wavelength and 35 as duration is predicted.
Collapse
Affiliation(s)
- Z Tibai
- Institute of Physics, University of Pécs, 7624 Pécs, Hungary
| | - Gy Tóth
- Institute of Physics, University of Pécs, 7624 Pécs, Hungary
| | - M I Mechler
- MTA-PTE High Field Terahertz Research Group, 7624 Pécs, Hungary
| | - J A Fülöp
- MTA-PTE High Field Terahertz Research Group, 7624 Pécs, Hungary and Szentágothai Research Centre, 7624 Pécs, Hungary
| | - G Almási
- Institute of Physics, University of Pécs, 7624 Pécs, Hungary
| | - J Hebling
- Institute of Physics, University of Pécs, 7624 Pécs, Hungary and MTA-PTE High Field Terahertz Research Group, 7624 Pécs, Hungary and Szentágothai Research Centre, 7624 Pécs, Hungary
| |
Collapse
|
17
|
Petrillo V, Anania MP, Artioli M, Bacci A, Bellaveglia M, Chiadroni E, Cianchi A, Ciocci F, Dattoli G, Di Giovenale D, Di Pirro G, Ferrario M, Gatti G, Giannessi L, Mostacci A, Musumeci P, Petralia A, Pompili R, Quattromini M, Rau JV, Ronsivalle C, Rossi AR, Sabia E, Vaccarezza C, Villa F. Observation of time-domain modulation of free-electron-laser pulses by multipeaked electron-energy spectrum. PHYSICAL REVIEW LETTERS 2013; 111:114802. [PMID: 24074094 DOI: 10.1103/physrevlett.111.114802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
We present the experimental demonstration of a new scheme for the generation of ultrashort pulse trains based on free-electron-laser (FEL) emission from a multipeaked electron energy distribution. Two electron beamlets with energy difference larger than the FEL parameter ρ have been generated by illuminating the cathode with two ps-spaced laser pulses, followed by a rotation of the longitudinal phase space by velocity bunching in the linac. The resulting self-amplified spontaneous emission FEL radiation, measured through frequency-resolved optical gating diagnostics, reveals a double-peaked spectrum and a temporally modulated pulse structure.
Collapse
Affiliation(s)
- V Petrillo
- INFN-Milano and Università di Milano, Via Celoria, 16 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|