1
|
von Milczewski J, Chen X, Imamoglu A, Schmidt R. Superconductivity Induced by Strong Electron-Exciton Coupling in Doped Atomically Thin Semiconductor Heterostructures. PHYSICAL REVIEW LETTERS 2024; 133:226903. [PMID: 39672128 DOI: 10.1103/physrevlett.133.226903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 12/15/2024]
Abstract
We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound s-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.
Collapse
Affiliation(s)
- Jonas von Milczewski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xin Chen
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| | | | - Richard Schmidt
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Shen X, Davidson N, Bruun GM, Sun M, Wu Z. Strongly Interacting Bose-Fermi Mixtures: Mediated Interaction, Phase Diagram, and Sound Propagation. PHYSICAL REVIEW LETTERS 2024; 132:033401. [PMID: 38307087 DOI: 10.1103/physrevlett.132.033401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the sound velocity of the Bose gas in the ^{133}Cs-^{6}Li mixture, again finding good agreement with the experimental observations both at weak and strong interactions. A central ingredient of our theory is the generalization of a fermion mediated interaction to strong Bose-Fermi scatterings and to finite frequencies. This further leads to a predicted hybridization of the sound modes of the Bose and Fermi gases, which can be directly observed using Bragg spectroscopy.
Collapse
Affiliation(s)
- Xin Shen
- College of Sciences, China Jiliang University, Hangzhou 310018, China
| | - Nir Davidson
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Georg M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Mingyuan Sun
- State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Chen XY, Duda M, Schindewolf A, Bause R, Bloch I, Luo XY. Suppression of Unitary Three-Body Loss in a Degenerate Bose-Fermi Mixture. PHYSICAL REVIEW LETTERS 2022; 128:153401. [PMID: 35499890 DOI: 10.1103/physrevlett.128.153401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
We study three-body loss in an ultracold mixture of a thermal Bose gas and a degenerate Fermi gas. We find that at unitarity, where the interspecies scattering length diverges, the usual inverse-square temperature scaling of the three-body loss found in nondegenerate systems is strongly modified and reduced with the increasing degeneracy of the Fermi gas. While the reduction of loss is qualitatively explained within the few-body scattering framework, a remaining suppression provides evidence for the long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions mediated by fermions between bosons. Our model based on RKKY interactions quantitatively reproduces the data without free parameters, and predicts one order of magnitude reduction of the three-body loss coefficient in the deeply Fermi-degenerate regime.
Collapse
Affiliation(s)
- Xing-Yan Chen
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Marcel Duda
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Andreas Schindewolf
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Roman Bause
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| |
Collapse
|
4
|
Grochowski PT, Karpiuk T, Brewczyk M, Rzążewski K. Breathing Mode of a Bose-Einstein Condensate Immersed in a Fermi Sea. PHYSICAL REVIEW LETTERS 2020; 125:103401. [PMID: 32955322 DOI: 10.1103/physrevlett.125.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
By analyzing the breathing mode of a Bose-Einstein condensate repulsively interacting with a polarized fermionic cloud, we further the understanding of a Bose-Fermi mixture recently realized by Lous et al. [Phys. Rev. Lett. 120, 243403 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.243403]. We show that a hydrodynamic description of a domain wall between bosonic and fermionic atoms reproduces the experimental data of Huang et al. [Phys. Rev. A 99, 041602(R) (2019)PLRAAN2469-992610.1103/PhysRevA.99.041602]. Two different types of interaction renormalization are explored, based on lowest-order constrained variational and perturbation techniques. In order to replicate nonmonotonic behavior of the oscillation frequency observed in the experiment, temperature effects have to be included. We find that the frequency down-shift is caused by the fermion-induced compression and rethermalization of the bosonic species as the system is quenched into the strongly interacting regime.
Collapse
Affiliation(s)
- Piotr T Grochowski
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Tomasz Karpiuk
- Wydział Fizyki, Uniwersytet w Białymstoku, ul. K. Ciołkowskiego 1L, 15-245 Białystok, Poland
| | - Mirosław Brewczyk
- Wydział Fizyki, Uniwersytet w Białymstoku, ul. K. Ciołkowskiego 1L, 15-245 Białystok, Poland
| | - Kazimierz Rzążewski
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
5
|
Yan ZZ, Ni Y, Robens C, Zwierlein MW. Bose polarons near quantum criticality. Science 2020; 368:190-194. [DOI: 10.1126/science.aax5850] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/13/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Zoe Z. Yan
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiqi Ni
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Robens
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W. Zwierlein
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Lous RS, Fritsche I, Jag M, Lehmann F, Kirilov E, Huang B, Grimm R. Probing the Interface of a Phase-Separated State in a Repulsive Bose-Fermi Mixture. PHYSICAL REVIEW LETTERS 2018; 120:243403. [PMID: 29956951 DOI: 10.1103/physrevlett.120.243403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 06/08/2023]
Abstract
We probe the interface between a phase-separated Bose-Fermi mixture consisting of a small Bose-Einstein condensate of ^{41}K residing in a large Fermi sea of ^{6}Li. We quantify the residual spatial overlap between the two components by measuring three-body recombination losses for variable strength of the interspecies repulsion. A comparison with a numerical mean-field model highlights the importance of the kinetic energy term for the condensed bosons in maintaining the thin interface far into the phase-separated regime. Our results demonstrate a corresponding smoothing of the phase transition in a system of finite size.
Collapse
Affiliation(s)
- Rianne S Lous
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Isabella Fritsche
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Michael Jag
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Fabian Lehmann
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Emil Kirilov
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Bo Huang
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - Rudolf Grimm
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|