1
|
Koroteev YM, Silkin IV, Silkin VM, Chulkov EV. Quantum-Size Effects in Ultra-Thin Gold Films on Pt(111) Surface. MATERIALS (BASEL, SWITZERLAND) 2023; 17:63. [PMID: 38203917 PMCID: PMC10779727 DOI: 10.3390/ma17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
We calculate, within the density-functional theory, the atomic and electronic structure of the clean Pt(111) and Au(111) surfaces and the nML-Au/Pt(111) systems with n varying from one to three. The effect of the spin-orbital interaction was taken into account. Several new electronic states with strong localization in the surface region were found and discussed in the case of clean surfaces. The Au adlayers introduce numerous quantum well states in the energy regions corresponding to the projected bulk band continuum of Au(111). Moreover, the presence of states resembling the true Au(111) surface states can be detected at n = 2 and 3. The Au/Pd interface states are found as well. In nML-Au/Pt(111), the calculated work function presents a small variation with a variation of the number of the Au atomic layer. Nevertheless, the effect is significantly smaller in comparison to the s-p metals.
Collapse
Affiliation(s)
- Yury M. Koroteev
- Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Laboratory of Electronic and Spin Structure of Nanosystems, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Igor V. Silkin
- Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Vyacheslav M. Silkin
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV-EHU), Apdo. 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Pl. Euskadi 5, 48009 Bilbao, Spain
| | - Evgueni V. Chulkov
- Laboratory of Electronic and Spin Structure of Nanosystems, Saint Petersburg State University, 198504 Saint Petersburg, Russia
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV-EHU), Apdo. 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, P. Manuel Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
2
|
Baumberg JJ, Esteban R, Hu S, Muniain U, Silkin IV, Aizpurua J, Silkin VM. Quantum Plasmonics in Sub-Atom-Thick Optical Slots. NANO LETTERS 2023; 23:10696-10702. [PMID: 38029409 PMCID: PMC10722603 DOI: 10.1021/acs.nanolett.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
We show using time-dependent density functional theory (TDDFT) that light can be confined into slot waveguide modes residing between individual atomic layers of coinage metals, such as gold. As the top atomic monolayer lifts a few Å off the underlying bulk Au (111), ab initio electronic structure calculations show that for gaps >1.5 Å, visible light squeezes inside the empty slot underneath, giving optical field distributions 2 Å thick, less than the atomic diameter. Paradoxically classical electromagnetic models are also able to reproduce the resulting dispersion for these subatomic slot modes, where light reaches in-plane wavevectors ∼2 nm-1 and slows to <10-2c. We explain the success of these classical dispersion models for gaps ≥1.5 Å due to a quantum-well state forming in the lifted monolayer in the vicinity of the Fermi level. This extreme trapping of light may explain transient "flare" emission from plasmonic cavities where Raman scattering of metal electrons is greatly enhanced when subatomic slot confinement occurs. Such atomic restructuring of Au under illumination is relevant to many fields, from photocatalysis and molecular electronics to plasmonics and quantum optics.
Collapse
Affiliation(s)
- Jeremy J. Baumberg
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Ruben Esteban
- Donostia
International Physics Center, P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain
- Centro
de Física de Materiales, Centro Mixto
CSIC-UPV/EHU, P. de Manuel
Lardizabal, 5, 20018 San Sebastián/Donostia, Basque Country, Spain
| | - Shu Hu
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Unai Muniain
- Donostia
International Physics Center, P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain
| | | | - Javier Aizpurua
- Donostia
International Physics Center, P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain
- Centro
de Física de Materiales, Centro Mixto
CSIC-UPV/EHU, P. de Manuel
Lardizabal, 5, 20018 San Sebastián/Donostia, Basque Country, Spain
| | - Vyacheslav M. Silkin
- Donostia
International Physics Center, P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física,
Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain
| |
Collapse
|
3
|
Koroteev YM, Silkin IV, Chernov IP, Chulkov EV, Silkin VM. Acoustic Plasmons in Nickel and Its Modification upon Hydrogen Uptake. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:141. [PMID: 36616051 PMCID: PMC9823890 DOI: 10.3390/nano13010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In this work, we study, in the framework of the ab initio linear-response time-dependent density functional theory, the low-energy collective electronic excitations with characteristic sound-like dispersion, called acoustic plasmons, in bulk ferromagnetic nickel. Since the respective spatial oscillations in slow and fast charge systems involve states with different spins, excitation of such plasmons in nickel should result in the spatial variations in the spin structure as well. We extend our study to NiHx with different hydrogen concentrations x. We vary the hydrogen concentration and trace variations in the acoustic plasmons properties. Finally, at x=1 the acoustic modes disappear in paramagnetic NiH. The explanation of such evolution is based on the changes in the population of different energy bands with hydrogen content variation.
Collapse
Affiliation(s)
- Yury M. Koroteev
- Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Igor V. Silkin
- Faculty of Physics, Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia
| | - Ivan P. Chernov
- Engineering School of Nuclear Technology, Tomsk Polytechnical University, Lenin Ave. 30, 634050 Tomsk, Russia
| | - Evgueni V. Chulkov
- Laboratory of Electronic and Spin Structure of Nanosystems, St. Petersburg State University, 198504 St. Petersburg, Russia
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV-EHU), Apdo. 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, E-20018 San Sebastián, Spain
- Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, P. de Manuel Lardizabal, 5, E-20018 San Sebastián, Spain
| | - Vyacheslav M. Silkin
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV-EHU), Apdo. 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
4
|
Muniain U, Silkin VM. Impact of the energy dispersion anisotropy on the plasmonic structure in a two-dimensional electron system. Phys Chem Chem Phys 2022; 24:17885-17894. [PMID: 35852308 DOI: 10.1039/d2cp02050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the band structure anisotropy (triangular, square, and hexagonal wrapping) on the electronic collective excitations (plasmons) in a two-dimensional electron gas (2DEG) is studied in the framework of the random-phase approximation. We show that the dynamical dielectric response in these systems strongly depends on the direction of the in-plane momentum transfer q. The effect is so pronounced that it results in a different number of electronic collective excitations in some q regions, both with - and ∼q-like energy dispersions. This finding is in striking contrast to the conventional 2DEG case with isotropic energy band dispersion where only a single plasmon with dispersion can exist. Our prediction of acoustic modes (with the ∼q dispersion) in a one-energy-band electron system expands the previous knowledge that such kind of plasmon can be realized only in two-component systems.
Collapse
Affiliation(s)
- Unai Muniain
- Donostia International Physics Center (DIPC), P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain.
| | - Vyacheslav M Silkin
- Donostia International Physics Center (DIPC), P. de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Basque Country, Spain. .,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, Apartado 1072, 20080 San Sebastián/Donostia, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| |
Collapse
|
5
|
Politano A. On the fate of high-resolution electron energy loss spectroscopy (HREELS), a versatile probe to detect surface excitations: will the Phoenix rise again? Phys Chem Chem Phys 2021; 23:26061-26069. [PMID: 34812442 DOI: 10.1039/d1cp03804d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From its advent, high-resolution electron energy loss spectroscopy (HREELS) has emerged as one of the most versatile tools in surface science. In the last few decades, HREELS was widely used for the fundamental study of (i) chemical reactions at the surfaces of model catalysts (mostly single crystals), (ii) lattice dynamics (phonons), (iii) surface plasmons and (iv) magnons. However, HREELS has experienced a continuous decay of the number of daily users worldwide so far, due to several factors. However, the rise of Dirac materials (graphene, topological insulators, Dirac semimetals) offers new perspectives for HREELS, due to its unique features enabling ultrasensitive detection of (i) chemical modifications at their surfaces, (ii) Kohn anomalies arising from electron-phonon coupling and (iii) novel plasmonic excitations associated to Dirac-cone fermions, as well as their eventual mutual interplay with other plasmon resonances related to topologically trivial electronic states. By selected case-study examples, here we show that HREELS can uniquely probe these phenomena in Dirac materials, thus validating its outstanding relevance and its irreplaceability in contemporary solid-state physics, thus paving the way for a renewed interest. In addition, recent technological upgrades enable the combination of HREELS as an add-on to photoemission apparatuses for parallel readout of energy and momentum of surface excitations. Open issues for theoretical modelling of HREELS related to the dependence on primary electron beam energy and scattering geometry are also critically presented.
Collapse
Affiliation(s)
- Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila, Abruzzo, Italy. .,CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
6
|
Bracco G, Vattuone L, Smerieri M, Carraro G, Savio L, Paolini G, Benedek G, Echenique PM, Rocca M. Prominence of Terahertz Acoustic Surface Plasmon Excitation in Gas-Surface Interaction with Metals. J Phys Chem Lett 2021; 12:9894-9898. [PMID: 34609889 DOI: 10.1021/acs.jpclett.1c02669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The current understanding of the dynamics of gas-surface interactions is that all of the energy lost in the collision is transferred to vibrations of the target. Electronic excitations were shown to play a marginal role except for cases in which the impinging particles have energies of several electronvolts. Here we show that this picture does not hold for metal surfaces supporting acoustic surface plasmons. Such loss, dressed with a vibronic structure, is shown to make up a prominent energy transfer route down to the terahertz region for Ne atoms scattering off Cu(111) and is expected to dominate for most metals. This mechanism determines, e.g., the drag force acting on telecommunication satellites, which are typically gold-plated to reduce overheating by sunshine. The electronic excitations can be unambiguously discerned from the vibrational ones under mild hyperthermal impact conditions.
Collapse
Affiliation(s)
- G Bracco
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - L Vattuone
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - M Smerieri
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - G Carraro
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - L Savio
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - G Paolini
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - G Benedek
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
- DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain
| | - P M Echenique
- DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain
| | - M Rocca
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- IMEM-CNR Unità di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
7
|
Benedek G, Bernasconi M, Campi D, Silkin IV, Chernov IP, Silkin VM, Chulkov EV, Echenique PM, Toennies JP, Anemone G, Al Taleb A, Miranda R, Farías D. Evidence for a spin acoustic surface plasmon from inelastic atom scattering. Sci Rep 2021; 11:1506. [PMID: 33452337 PMCID: PMC7810840 DOI: 10.1038/s41598-021-81018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/29/2020] [Indexed: 11/09/2022] Open
Abstract
Closed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons via electron-phonon interaction, as well as into acoustic surface plasmons (ASPs). While the first channel is the basis of the current inelastic atom scattering (IAS) surface-phonon spectroscopy, no attempt to observe ASPs with IAS has been made so far. In this study we provide evidence of ASP in Ni(111) with both Ne atom scattering and He atom scattering. While the former measurements confirm and extend so far unexplained data, the latter illustrate the coupling of ASP with phonons inside the surface-projected phonon continuum, leading to a substantial reduction of the ASP velocity and possibly to avoided crossing with the optical surface phonon branches. The analysis is substantiated by a self-consistent calculation of the surface response function to atom collisions and of the first-principle surface-phonon dynamics of Ni(111). It is shown that in Ni(111) ASP originate from the majority-spin Shockley surface state and are therefore collective oscillation of surface electrons with the same spin, i.e. it represents a new kind of collective quasiparticle: a Spin Acoustic Surface Plasmon (SASP).
Collapse
Affiliation(s)
- G Benedek
- Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.,Donostia International Physics Center (DIPC), 20018, San Sebastián/Donostia, Basque Country, Spain
| | - M Bernasconi
- Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - D Campi
- Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.,École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - I V Silkin
- Tomsk State University, 634050, Tomsk, Russia
| | - I P Chernov
- Engineering School of Nuclear Technology, Tomsk Polytechnic University, 634050, Tomsk, Russia
| | - V M Silkin
- Donostia International Physics Center (DIPC), 20018, San Sebastián/Donostia, Basque Country, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080, San Sebastián/Donostia, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Basque Country, Spain
| | - E V Chulkov
- Donostia International Physics Center (DIPC), 20018, San Sebastián/Donostia, Basque Country, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080, San Sebastián/Donostia, Basque Country, Spain.,Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, 20018, San Sebastian/Donostia, Basque Country, Spain.,St. Petersburg State University, 198504, St. Petersburg, Russia
| | - P M Echenique
- Donostia International Physics Center (DIPC), 20018, San Sebastián/Donostia, Basque Country, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20080, San Sebastián/Donostia, Basque Country, Spain.,Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, 20018, San Sebastian/Donostia, Basque Country, Spain
| | - J P Toennies
- Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstraße 10, 37073, Göttingen, Germany
| | - G Anemone
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - A Al Taleb
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - R Miranda
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049, Madrid, Spain.,Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - D Farías
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Rocca M. Surface Plasmons and Plasmonics. SPRINGER HANDBOOK OF SURFACE SCIENCE 2020:531-556. [DOI: 10.1007/978-3-030-46906-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Silkin VM, Chulkov EV, Echenique PM. Collective electronic excitations on the MgB2(0001) surfaces. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Denk R, Lodi-Rizzini A, Wang S, Hohage M, Zeppenfeld P, Cai J, Fasel R, Ruffieux P, Berger RFJ, Chen Z, Narita A, Feng X, Müllen K, Biagi R, De Renzi V, Prezzi D, Ruini A, Ferretti A. Probing optical excitations in chevron-like armchair graphene nanoribbons. NANOSCALE 2017; 9:18326-18333. [PMID: 29143040 DOI: 10.1039/c7nr06175g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.
Collapse
Affiliation(s)
- Richard Denk
- Institute of Experimental Physics, Johannes Kepler University, 4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Serrano G, Tebi S, Wiespointner-Baumgarthuber S, Müllegger S, Koch R. Radio frequency surface plasma oscillations: electrical excitation and detection by Ar/Ag(111). Sci Rep 2017; 7:9708. [PMID: 28852069 PMCID: PMC5574974 DOI: 10.1038/s41598-017-10170-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/07/2017] [Indexed: 11/23/2022] Open
Abstract
We electrically excite surface plasma oscillations on a Ag(111) single crystal by alternating electric charging at radio frequency. The radio frequency signal energy of 2.2 μeV, used to induce surface plasma oscillations, is about 5 to 6 orders of magnitude lower than the plasmon energies reachable by optical excitation or electron impact. The detection of the surface plasma oscillations is achieved by nano-fabricated 2D single-crystal sensor-islands of Ar atoms, which are shown by imaging with a scanning tunneling microscope to restructure in response to the radio frequency surface plasma oscillations, providing nanometer spatial resolution and a characteristic decay time of ≈150 ns.
Collapse
Affiliation(s)
- Giulia Serrano
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Stefano Tebi
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| | | | - Stefan Müllegger
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria.
| | - Reinhold Koch
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| |
Collapse
|
12
|
Sessi P, Silkin VM, Nechaev IA, Bathon T, El-Kareh L, Chulkov EV, Echenique PM, Bode M. Direct observation of many-body charge density oscillations in a two-dimensional electron gas. Nat Commun 2015; 6:8691. [PMID: 26498368 DOI: 10.1038/ncomms9691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.
Collapse
Affiliation(s)
- Paolo Sessi
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vyacheslav M Silkin
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain.,Departamento de Física de Materiales, Universidad del País Vasco, Apartado 1072, 20080 San Sebastián/Donostia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Ilya A Nechaev
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain.,Centro de Física de Materiales CFM-Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHU, Paseo de Manuel Lardizabal 5, 20018 San Sebastián/Donostia, Spain.,Tomsk State University, 634050 Tomsk, Russia.,Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Thomas Bathon
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lydia El-Kareh
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Evgueni V Chulkov
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain.,Departamento de Física de Materiales, Universidad del País Vasco, Apartado 1072, 20080 San Sebastián/Donostia, Spain.,Centro de Física de Materiales CFM-Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHU, Paseo de Manuel Lardizabal 5, 20018 San Sebastián/Donostia, Spain.,Tomsk State University, 634050 Tomsk, Russia.,Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Pedro M Echenique
- Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain.,Departamento de Física de Materiales, Universidad del País Vasco, Apartado 1072, 20080 San Sebastián/Donostia, Spain.,Centro de Física de Materiales CFM-Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHU, Paseo de Manuel Lardizabal 5, 20018 San Sebastián/Donostia, Spain
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Smerieri M, Vattuone L, Savio L, Langer T, Tegenkamp C, Pfnür H, Silkin VM, Rocca M. Anisotropic dispersion and partial localization of acoustic surface plasmons on an atomically stepped surface: Au(788). PHYSICAL REVIEW LETTERS 2014; 113:186804. [PMID: 25396388 DOI: 10.1103/physrevlett.113.186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 06/04/2023]
Abstract
Understanding acoustic surface plasmons (ASPs) in the presence of nanosized gratings is necessary for the development of future devices that couple light with ASPs. We show here by experiment and theory that two ASPs exist on Au(788), a vicinal surface with an ordered array of monoatomic steps. The ASPs propagate across the steps as long as their wavelength exceeds the terrace width, thereafter becoming localized. Our investigation identifies, for the first time, ASPs coupled with intersubband transitions involving multiple surface-state subbands.
Collapse
Affiliation(s)
- M Smerieri
- IMEM-CNR Unitá Operativa di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - L Vattuone
- IMEM-CNR Unitá Operativa di Genova, Via Dodecaneso 33, 16146 Genova, Italy and Dipartimento di Fisica dell'Universitá di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - L Savio
- IMEM-CNR Unitá Operativa di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - T Langer
- Institut für Festkörperphysik, Abteilung Atomare und Molekulare Strukturen, Leibniz Universität Hannover, Appelstrasse 2, D-30167 Hannover, Germany
| | - C Tegenkamp
- Institut für Festkörperphysik, Abteilung Atomare und Molekulare Strukturen, Leibniz Universität Hannover, Appelstrasse 2, D-30167 Hannover, Germany
| | - H Pfnür
- Institut für Festkörperphysik, Abteilung Atomare und Molekulare Strukturen, Leibniz Universität Hannover, Appelstrasse 2, D-30167 Hannover, Germany
| | - V M Silkin
- Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco, Apartado 1072, 20080 San Sebastián/Donostia, Spain and Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - M Rocca
- IMEM-CNR Unitá Operativa di Genova, Via Dodecaneso 33, 16146 Genova, Italy and Dipartimento di Fisica dell'Universitá di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|