1
|
Devaraj V, Alvarado IAR, Lee JM, Oh JW, Gerstmann U, Schmidt WG, Zentgraf T. Self-assembly of isolated plasmonic dimers with sub-5 nm gaps on a metallic mirror. NANOSCALE HORIZONS 2025; 10:537-548. [PMID: 39692357 DOI: 10.1039/d4nh00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Realizing plasmonic nanogaps with a refractive index (n = 1) environment in metallic nanoparticle (NP) structures is highly attractive for a wide range of applications. So far in self-assembly-based approaches, without surface functionalization of metallic NPs, achieving such extremely small nanogaps is challenging. Surface functionalization introduces changes in the refractive index at nanogaps, which in turn deteriorates the desired plasmonic properties. In addition, fabrication of low-density dimer NP designs with smaller nanogaps poses a big challenge. Here, we introduce a simple and straightforward self-assembly-based strategy for the fabrication of low-density, isolated dimer gold nanoparticles in a nano-particle-on-metallic-mirror (NPoM) platform. A minimum interparticle gap distance between NPs of ∼3 nm is achieved without surface functionalization. This is possible by utilizing the M13 bacteriophage as the spacer layer instead of SiO2 in NPoM. Density functional theory calculations on Au atom adsorption on SiO2 and M13 bacteriophage surface constituents trace the NP assembly on the latter to a comparatively weak interaction with the substrate. Our study offers an attractive route for fabricating low density plasmonic dimer structures featuring small nanogaps and will enrich structure specific/isolated studies benefitting a variety of optical, actuator, and sensing applications.
Collapse
Affiliation(s)
- Vasanthan Devaraj
- Department of Physics, Paderborn University, 33098 Paderborn, Germany.
- Institute for Photonic Quantum Systems (PhoQS), Paderborn University, 33098 Paderborn, Germany
| | | | - Jong-Min Lee
- School of Nano Convergence Technology & Nano Convergence Technology Center, Hallym University, 24252 Chuncheon, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, 46241 Busan, Republic of Korea.
| | - Uwe Gerstmann
- Theoretical Materials Physics, Paderborn University, 33098 Paderborn, Germany
| | - Wolf Gero Schmidt
- Theoretical Materials Physics, Paderborn University, 33098 Paderborn, Germany
| | - Thomas Zentgraf
- Department of Physics, Paderborn University, 33098 Paderborn, Germany.
- Institute for Photonic Quantum Systems (PhoQS), Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
2
|
Künstner S, McPeak JE, Chu A, Kern M, Wick M, Dinse KP, Anders J, Naydenov B, Lips K. Microwave field mapping for EPR-on-a-chip experiments. SCIENCE ADVANCES 2024; 10:eado5467. [PMID: 39151005 PMCID: PMC11801239 DOI: 10.1126/sciadv.ado5467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
Electron paramagnetic resonance-on-a-chip (EPRoC) devices use small voltage-controlled oscillators (VCOs) for both the excitation and detection of the EPR signal, allowing access to unique sample environments by lifting the restrictions imposed by resonator-based EPR techniques. EPRoC devices have been successfully used at multiple frequencies (7 to 360 gigahertz) and have demonstrated their utility in producing high-resolution spectra in a variety of spin centers. To enable quantitative measurements using EPRoC devices, the spatial distribution of the B1 field produced by the VCOs must be known. As an example, the field distribution of a 12-coil VCO array EPRoC operating at 14 gigahertz is described in this study. The frequency modulation-recorded EPR spectra of a "point"-like and a thin-film sample were investigated while varying the position of both samples in three directions. The results were compared to COMSOL simulations of the B1-field intensity. The EPRoC array sensitive volume was determined to be ~19 nanoliters. Implications for possible EPR applications are discussed.
Collapse
Affiliation(s)
- Silvio Künstner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Joseph E. McPeak
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Anh Chu
- Institute of Smart Sensors, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Michal Kern
- Institute of Smart Sensors, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Markus Wick
- Institute of Smart Sensors, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Klaus-Peter Dinse
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute for Microelectronics Stuttgart (IMS CHIPS), Allmandring 30a, 70569 Stuttgart, Germany
| | - Jens Anders
- Institute of Smart Sensors, Universität Stuttgart, 70569 Stuttgart, Germany
- Institute for Microelectronics Stuttgart (IMS CHIPS), Allmandring 30a, 70569 Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), Stuttgart and Ulm, Germany
| | - Boris Naydenov
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Lips
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
4
|
Wei X, Zhang P, Xu T, Zhou H, Bai Y, Chen Q. Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chem Soc Rev 2022; 51:10016-10063. [PMID: 36398768 DOI: 10.1039/d2cs00110a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Electronic doping is applied to tailor the electrical and optoelectronic properties of semiconductors, which have been widely adopted in information and clean energy technologies, like integrated circuit fabrication and PVs. Though this concept has prevailed in conventional PVs, it has achieved limited success in the new-generation PV materials, particularly in halide perovskites, owing to their soft lattice nature and self-compensation by intrinsic defects. In this review, we summarize the evolution of the theoretical understanding and strategies of electronic doping from Si-based photovoltaics to thin-film technologies, e.g., GaAs, CdTe and Cu(In,Ga)Se2, and also cover the emerging PVs including halide perovskites and organic solar cells. We focus on the chemical approaches to electronic doping, emphasizing various chemical interactions/bonding throughout materials synthesis/modification to device fabrication/operation. Furthermore, we propose new classifications and models of electronic doping based on the physical and chemical properties of dopants, in the context of solid-state chemistry, which inspires further development of optoelectronics based on perovskites and other hybrid materials. Finally, we outline the effects of electronic doping in semiconducting materials and highlight the challenges that need to be overcome for reliable and controllable doping.
Collapse
Affiliation(s)
- Xueyuan Wei
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Pengxiang Zhang
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Tailai Xu
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Bai
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Qi Chen
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
6
|
Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465901. [PMID: 29064822 DOI: 10.1088/1361-648x/aa8f79] [Citation(s) in RCA: 1713] [Impact Index Per Article: 214.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Collapse
Affiliation(s)
- P Giannozzi
- Department of Mathematics, Computer Science, and Physics, University of Udine, via delle Scienze 206, I-33100 Udine, Italy
| | - O Andreussi
- Institute of Computational Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - T Brumme
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, D-04103 Leipzig, Germany
| | - O Bunau
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - M Buongiorno Nardelli
- Department of Physics and Department of Chemistry, University of North Texas, Denton, TX, United States of America
| | - M Calandra
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - R Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - C Cavazzoni
- CINECA-Via Magnanelli 6/3, I-40033 Casalecchio di Reno, Bologna, Italy
| | - D Ceresoli
- Institute of Molecular Science and Technologies (ISTM), National Research Council (CNR), I-20133 Milano, Italy
| | - M Cococcioni
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - N Colonna
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - I Carnimeo
- Department of Mathematics, Computer Science, and Physics, University of Udine, via delle Scienze 206, I-33100 Udine, Italy
| | - A Dal Corso
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - S de Gironcoli
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - P Delugas
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - R A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - A Ferretti
- CNR Istituto Nanoscienze, I-42125 Modena, Italy
| | - A Floris
- School of Mathematics and Physics, College of Science, University of Lincoln, United Kingdom
| | - G Fratesi
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| | - G Fugallo
- ETSF, Laboratoire des Solides Irradiés, Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | - R Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| | - U Gerstmann
- Department Physik, Universität Paderborn, D-33098 Paderborn, Germany
| | - F Giustino
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - T Gorni
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - J Jia
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - M Kawamura
- The Institute for Solid State Physics, Kashiwa, Japan
| | - H-Y Ko
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - A Kokalj
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - E Küçükbenli
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - M Lazzeri
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - M Marsili
- Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - N Marzari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - F Mauri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - N L Nguyen
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - H-V Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
| | - A Otero-de-la-Roza
- Department of Chemistry, University of British Columbia, Okanagan, Kelowna BC V1V 1V7, Canada
| | - L Paulatto
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - S Poncé
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - D Rocca
- Université de Lorraine, CRM2, UMR 7036, F-54506 Vandoeuvre-lès-Nancy, France
- CNRS, CRM2, UMR 7036, F-54506 Vandoeuvre-lès-Nancy, France
| | - R Sabatini
- Orionis Biosciences, Newton, MA 02466, United States of America
| | - B Santra
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - M Schlipf
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - A P Seitsonen
- Institut für Chimie, Universität Zurich, CH-8057 Zürich, Switzerland
- Département de Chimie, École Normale Supérieure, F-75005 Paris, France
| | - A Smogunov
- SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-Sur-Yvette, France
| | - I Timrov
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - T Thonhauser
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States of America
| | - P Umari
- Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - N Vast
- Laboratoire des Solides Irradiés, École Polytechnique, CEA-DRF-IRAMIS, CNRS UMR 7642, Université Paris-Saclay, F-91120 Palaiseau, France
| | - X Wu
- Department of Physics, Temple University, Philadelphia, PA 19122-1801, United States of America
| | - S Baroni
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|