1
|
Nishiyama T, Hasegawa Y. Exact solution to quantum dynamical activity. Phys Rev E 2024; 109:044114. [PMID: 38755924 DOI: 10.1103/physreve.109.044114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 05/18/2024]
Abstract
The quantum dynamical activity constitutes a thermodynamic cost in trade-off relations such as the quantum speed limit and the quantum thermodynamic uncertainty relation. However, calculating the quantum dynamical activity has been a challenge. In this paper, we present the exact solution for the quantum dynamical activity by deploying the continuous matrix product state method. Moreover, using the derived exact solution, we determine the upper bound of the dynamical activity, which comprises the standard deviation of the system Hamiltonian and jump operators. We confirm the exact solution and the upper bound by performing numerical simulations.
Collapse
Affiliation(s)
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Hurtado-Gutiérrez R, Hurtado PI, Pérez-Espigares C. Spectral signatures of symmetry-breaking dynamical phase transitions. Phys Rev E 2023; 108:014107. [PMID: 37583207 DOI: 10.1103/physreve.108.014107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 08/17/2023]
Abstract
Large deviation theory provides the framework to study the probability of rare fluctuations of time-averaged observables, opening new avenues of research in nonequilibrium physics. Some of the most appealing results within this context are dynamical phase transitions (DPTs), which might occur at the level of trajectories in order to maximize the probability of sustaining a rare event. While macroscopic fluctuation theory has underpinned much recent progress on the understanding of symmetry-breaking DPTs in driven diffusive systems, their microscopic characterization is still challenging. In this work we shed light on the general spectral mechanism giving rise to continuous DPTs not only for driven diffusive systems, but for any jump process in which a discrete Z_{n} symmetry is broken. By means of a symmetry-aided spectral analysis of the Doob-transformed dynamics, we provide the conditions whereby symmetry-breaking DPTs might emerge and how the different dynamical phases arise from the specific structure of the degenerate eigenvectors. In particular, we show explicitly how all symmetry-breaking features are encoded in the subleading eigenvectors of the degenerate subspace. Moreover, by partitioning configuration space into equivalence classes according to a proper order parameter, we achieve a substantial dimensional reduction which allows for the quantitative characterization of the spectral fingerprints of DPTs. We illustrate our predictions in several paradigmatic many-body systems, including (1) the one-dimensional boundary-driven weakly asymmetric exclusion process (WASEP), which exhibits a particle-hole symmetry-breaking DPT for current fluctuations, (2) the three- and four-state Potts model for spin dynamics, which displays discrete rotational symmetry-breaking DPTs for energy fluctuations, and (3) the closed WASEP which presents a continuous symmetry-breaking DPT into a time-crystal phase characterized by a rotating condensate.
Collapse
Affiliation(s)
- R Hurtado-Gutiérrez
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| | - P I Hurtado
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| | - C Pérez-Espigares
- Institute Carlos I for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
3
|
Hasegawa Y. Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence. Nat Commun 2023; 14:2828. [PMID: 37198163 DOI: 10.1038/s41467-023-38074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
The bulk-boundary correspondence provides a guiding principle for tackling strongly correlated and coupled systems. In the present work, we apply the concept of the bulk-boundary correspondence to thermodynamic bounds described by classical and quantum Markov processes. Using the continuous matrix product state, we convert a Markov process to a quantum field, such that jump events in the Markov process are represented by the creation of particles in the quantum field. Introducing the time evolution of the continuous matrix product state, we apply the geometric bound to its time evolution. We find that the geometric bound reduces to the speed limit relation when we represent the bound in terms of the system quantity, whereas the same bound reduces to the thermodynamic uncertainty relation when expressed based on quantities of the quantum field. Our results show that the speed limits and thermodynamic uncertainty relations are two aspects of the same geometric bound.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Rose DC, Macieszczak K, Lesanovsky I, Garrahan JP. Hierarchical classical metastability in an open quantum East model. Phys Rev E 2022; 105:044121. [PMID: 35590670 DOI: 10.1103/physreve.105.044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
We study in detail an open quantum generalization of a classical kinetically constrained model-the East model-known to exhibit slow glassy dynamics stemming from a complex hierarchy of metastable states with distinct lifetimes. Using the recently introduced theory of classical metastability for open quantum systems, we show that the driven open quantum East model features a hierarchy of classical metastabilities at low temperature and weak driving field. We find that the effective long-time description of its dynamics not only is classical, but shares many properties with the classical East model, such as obeying an effective detailed balance condition and lacking static interactions between excitations, but with this occurring within a modified set of metastable phases which are coherent, and with an effective temperature that is dependent on the coherent drive.
Collapse
Affiliation(s)
- Dominic C Rose
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Katarzyna Macieszczak
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Endo S, Sun J, Li Y, Benjamin SC, Yuan X. Variational Quantum Simulation of General Processes. PHYSICAL REVIEW LETTERS 2020; 125:010501. [PMID: 32678631 DOI: 10.1103/physrevlett.125.010501] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Variational quantum algorithms have been proposed to solve static and dynamic problems of closed many-body quantum systems. Here we investigate variational quantum simulation of three general types of tasks-generalized time evolution with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum system dynamics. The algorithm for generalized time evolution provides a unified framework for variational quantum simulation. In particular, we show its application in solving linear systems of equations and matrix-vector multiplications by converting these algebraic problems into generalized time evolution. Meanwhile, assuming a tensor product structure of the matrices, we also propose another variational approach for these two tasks by combining variational real and imaginary time evolution. Finally, we introduce variational quantum simulation for open system dynamics. We variationally implement the stochastic Schrödinger equation, which consists of dissipative evolution and stochastic jump processes. We numerically test the algorithm with a 6-qubit 2D transverse field Ising model under dissipation.
Collapse
Affiliation(s)
- Suguru Endo
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- NTT Secure Platform Laboratories, NTT Corporation, Musashino 180-8585, Japan
| | - Jinzhao Sun
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Ying Li
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Simon C Benjamin
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Xiao Yuan
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
6
|
Pérez-Espigares C, Hurtado PI. Sampling rare events across dynamical phase transitions. CHAOS (WOODBURY, N.Y.) 2019; 29:083106. [PMID: 31472495 DOI: 10.1063/1.5091669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. In some cases, this leads to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade, advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and in the number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.
Collapse
Affiliation(s)
- Carlos Pérez-Espigares
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - Pablo I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
7
|
Puel TO, Chesi S, Kirchner S, Ribeiro P. Mixed-Order Symmetry-Breaking Quantum Phase Transition Far from Equilibrium. PHYSICAL REVIEW LETTERS 2019; 122:235701. [PMID: 31298904 DOI: 10.1103/physrevlett.122.235701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 06/10/2023]
Abstract
We study the current-carrying steady state of a transverse field Ising chain coupled to magnetic thermal reservoirs and obtain the nonequilibrium phase diagram as a function of the magnetization potential of the reservoirs. Upon increasing the magnetization bias we observe a discontinuous jump of the magnetic order parameter that coincides with a divergence of the correlation length. For steady states with a nonvanishing conductance, the entanglement entropy at zero temperature displays a bias dependent logarithmic correction that violates the area law and differs from the well-known equilibrium case. Our findings show that out-of-equilibrium conditions allow for novel critical phenomena not possible at equilibrium.
Collapse
Affiliation(s)
- T O Puel
- Beijing Computational Science Research Center, Beijing 100193, China
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou 310027, China
| | - Stefano Chesi
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - S Kirchner
- Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou 310027, China
| | - P Ribeiro
- Beijing Computational Science Research Center, Beijing 100193, China
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Katira S, Garrahan JP, Mandadapu KK. Solvation in Space-time: Pretransition Effects in Trajectory Space. PHYSICAL REVIEW LETTERS 2018; 120:260602. [PMID: 30004722 DOI: 10.1103/physrevlett.120.260602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate pretransition effects in space-time in trajectories of systems in which the dynamics displays a first-order phase transition between distinct dynamical phases. These effects are analogous to those observed for thermodynamic first-order phase transitions, most notably the hydrophobic effect in water. Considering the (infinite temperature) East model as an elementary example, we study the properties of "space-time solvation" by examining trajectories where finite space-time regions are conditioned to be inactive in an otherwise active phase. We find that solvating an inactive region of space-time within an active trajectory shows two regimes in the dynamical equivalent of solvation free energy: an "entropic" small solute regime in which uncorrelated fluctuations are sufficient to evacuate activity from the solute, and an "energetic" large solute regime which involves the formation of a solute-induced inactive domain with an associated active-inactive interface bearing a dynamical interfacial tension. We also show that as a result of this dynamical interfacial tension there is a dynamical analog of the hydrophobic collapse that drives the assembly of large hydrophobes in water. We discuss the general relevance of these results to the properties of dynamical fluctuations in systems with slow collective relaxation such as glass formers.
Collapse
Affiliation(s)
- Shachi Katira
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Tizón-Escamilla N, Pérez-Espigares C, Garrido PL, Hurtado PI. Order and Symmetry Breaking in the Fluctuations of Driven Systems. PHYSICAL REVIEW LETTERS 2017; 119:090602. [PMID: 28949563 DOI: 10.1103/physrevlett.119.090602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 06/07/2023]
Abstract
Dynamical phase transitions (DPTs) in the space of trajectories are one of the most intriguing phenomena of nonequilibrium physics, but their nature in realistic high-dimensional systems remains puzzling. Here we observe for the first time a DPT in the current vector statistics of an archetypal two-dimensional (2D) driven diffusive system and characterize its properties using the macroscopic fluctuation theory. The complex interplay among the external field, anisotropy, and vector currents in 2D leads to a rich phase diagram, with different symmetry-broken fluctuation phases separated by lines of first- and second-order DPTs. Remarkably, different types of 1D order in the form of jammed density waves emerge to hinder transport for low-current fluctuations, revealing a connection between rare events and self-organized structures which enhance their probability.
Collapse
Affiliation(s)
- N Tizón-Escamilla
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - C Pérez-Espigares
- University of Modena and Reggio Emilia, via G. Campi 213/b, 41125 Modena, Italy
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - P L Garrido
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| | - P I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
10
|
Garrahan JP. Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables. Phys Rev E 2017; 95:032134. [PMID: 28415371 DOI: 10.1103/physreve.95.032134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Recent large deviation results have provided general lower bounds for the fluctuations of time-integrated currents in the steady state of stochastic systems. A corollary are so-called thermodynamic uncertainty relations connecting precision of estimation to average dissipation. Here we consider this problem but for counting observables, i.e., trajectory observables which, in contrast to currents, are non-negative and nondecreasing in time (and possibly symmetric under time reversal). In the steady state, their fluctuations to all orders are bound from below by a Conway-Maxwell-Poisson distribution dependent only on the averages of the observable and of the dynamical activity. We show how to obtain the corresponding bounds for first-passage times (times when a certain value of the counting variable is first reached) and their uncertainty relations. Just like entropy production does for currents, dynamical activity controls the bounds on fluctuations of counting observables.
Collapse
Affiliation(s)
- Juan P Garrahan
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Rose DC, Macieszczak K, Lesanovsky I, Garrahan JP. Metastability in an open quantum Ising model. Phys Rev E 2016; 94:052132. [PMID: 27967090 DOI: 10.1103/physreve.94.052132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/06/2023]
Abstract
We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.
Collapse
Affiliation(s)
- Dominic C Rose
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katarzyna Macieszczak
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
12
|
Sinitsyn NA, Pershin YV. The theory of spin noise spectroscopy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:106501. [PMID: 27615689 DOI: 10.1088/0034-4885/79/10/106501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Direct measurements of spin fluctuations are becoming the mainstream approach for studies of complex condensed matter, molecular, nuclear, and atomic systems. This review covers recent progress in the field of optical spin noise spectroscopy (SNS) with an additional goal to establish an introduction into its theoretical foundations. Various theoretical techniques that have been recently used to interpret results of SNS measurements are explained alongside examples of their applications.
Collapse
Affiliation(s)
- Nikolai A Sinitsyn
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
13
|
Kiukas J, Guţă M, Lesanovsky I, Garrahan JP. Equivalence of matrix product ensembles of trajectories in open quantum systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012132. [PMID: 26274149 DOI: 10.1103/physreve.92.012132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Indexed: 06/04/2023]
Abstract
The equivalence of thermodynamic ensembles is at the heart of statistical mechanics and central to our understanding of equilibrium states of matter. Recently, a formal connection has been established between the dynamics of open quantum systems and statistical mechanics in an extra dimension: an open system dynamics generates a matrix product state (MPS) encoding all possible quantum jump trajectories which allows to construct generating functions akin to partition functions. For dynamics generated by a Lindblad master equation, the corresponding MPS is a so-called continuous MPS which encodes the set of continuous measurement records terminated at some fixed total observation time. Here, we show that if one instead terminates trajectories after a fixed total number of quantum jumps, e.g., emission events into the environment, the associated MPS is discrete. The continuous and discrete MPS correspond to different ensembles of quantum trajectories, one characterized by total time, the other by total number of quantum jumps. Hence, they give rise to quantum versions of different thermodynamic ensembles, akin to "grand canonical" and "isobaric," but for trajectories. Here, we prove that these trajectory ensembles are equivalent in a suitable limit of long time or large number of jumps. This is in direct analogy to equilibrium statistical mechanics where equivalence between ensembles is only strictly established in the thermodynamic limit. An intrinsic quantum feature is that the equivalence holds only for all observables that commute with the number of quantum jumps.
Collapse
Affiliation(s)
- Jukka Kiukas
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mădălin Guţă
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
14
|
Sciolla B, Poletti D, Kollath C. Two-time correlations probing the dynamics of dissipative many-body quantum systems: aging and fast relaxation. PHYSICAL REVIEW LETTERS 2015; 114:170401. [PMID: 25978211 DOI: 10.1103/physrevlett.114.170401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 06/04/2023]
Abstract
We use two-time correlation functions to study the complex dynamics of dissipative many-body quantum systems. In order to measure, understand, and categorize these correlations we extend the framework of the adiabatic elimination method. We show that, for the same parameters and times, two-time correlations can display two distinct behaviors depending on the observable considered: a fast exponential decay or a much slower dynamics. We exemplify these findings by studying strongly interacting bosons in a double well subjected to phase noise. While the single-particle correlations decay exponentially fast with time, the density-density correlations display slow aging dynamics. We also show that this slow relaxation regime is robust against particle losses. Additionally, we use the developed framework to show that the dynamic properties of dissipatively engineered states can be drastically different from their Hamiltonian counterparts.
Collapse
Affiliation(s)
- Bruno Sciolla
- University of Bonn, HISKP, Nussallee 14-16, 53115 Bonn, Germany
| | - Dario Poletti
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 Singapore
- MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore
| | - Corinna Kollath
- University of Bonn, HISKP, Nussallee 14-16, 53115 Bonn, Germany
| |
Collapse
|
15
|
Marcuzzi M, Levi E, Diehl S, Garrahan JP, Lesanovsky I. Universal nonequilibrium properties of dissipative Rydberg gases. PHYSICAL REVIEW LETTERS 2014; 113:210401. [PMID: 25479477 DOI: 10.1103/physrevlett.113.210401] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 06/04/2023]
Abstract
We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine the structure and properties of the phase diagram and identify the universality class of the transition, both for the statics and the dynamics. We show that the proper dynamical order parameter is in fact not the excitation density and find evidence that the dynamical transition is in the "model A" universality class; i.e., it features a nontrivial Z2 symmetry and a dynamics with nonconserved order parameter. This sheds light on some relevant and observable aspects of dynamical transitions in Rydberg gases. In particular it permits a quantitative understanding of a recent experiment [C. Carr, Phys. Rev. Lett. 111, 113901 (2013)] which observed bistable behavior as well as power-law scaling of the relaxation time. The latter emerges not due to critical slowing down in the vicinity of a second order transition, but from the nonequilibrium dynamics near a so-called spinodal line.
Collapse
Affiliation(s)
- Matteo Marcuzzi
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Emanuele Levi
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sebastian Diehl
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria and Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
16
|
Gammelmark S, Mølmer K. Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. PHYSICAL REVIEW LETTERS 2014; 112:170401. [PMID: 24836221 DOI: 10.1103/physrevlett.112.170401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Precision measurements with quantum systems rely on our ability to trace the differences between experimental signals to variations in unknown physical parameters. In this Letter we derive the Fisher information and the ensuing Cramér-Rao sensitivity limit for parameter estimation by continuous measurements on an open quantum system. We illustrate our theory by its application to resonance fluorescence from a laser-driven two-state atom; we show that photon counting and homodyne detection records yield different sensitivity to the atomic parameters, while none of them exceed our general result.
Collapse
Affiliation(s)
- Søren Gammelmark
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Klaus Mølmer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| |
Collapse
|