1
|
Aumaître S, Fauve S. Intermittency as a Consequence of a Stationarity Constraint on the Energy Flux. PHYSICAL REVIEW LETTERS 2024; 132:114002. [PMID: 38563937 DOI: 10.1103/physrevlett.132.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
In his seminal work on turbulence, Kolmogorov made use of the stationary hypothesis to determine the power density spectrum of the velocity field in turbulent flows. However, to our knowledge, the constraints that stationary processes impose on the fluctuations of the energy flux have never been used in the context of turbulence. Here, we recall that the power density spectra of the fluctuations of the injected power, the dissipated power, and the energy flux have to converge to a common value at vanishing frequency. Hence, we show that the intermittent Gledzer-Ohkitani-Yamada (GOY) shell model fulfills these constraints. We argue that they can be related to intermittency. Indeed, we find that the constraint on the fluctuations of the energy flux implies a relation between the scaling exponents that characterize intermittency, which is verified by the GOY shell model and in agreement with the She-Leveque formula. It also fixes the intermittency parameter of the log-normal model at a realistic value. The relevance of these results for real turbulence is drawn in the concluding remarks.
Collapse
Affiliation(s)
- Sébastien Aumaître
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif sur Yvette, Cedex, France
| | - Stephan Fauve
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
2
|
Kelly G, Bizmark N, Chakraborty B, Datta SS, Fai TG. Modeling the Transition between Localized and Extended Deposition in Flow Networks through Packings of Glass Beads. PHYSICAL REVIEW LETTERS 2023; 130:128204. [PMID: 37027860 DOI: 10.1103/physrevlett.130.128204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
We use a theoretical model to explore how fluid dynamics, in particular, the pressure gradient and wall shear stress in a channel, affect the deposition of particles flowing in a microfluidic network. Experiments on transport of colloidal particles in pressure-driven systems of packed beads have shown that at lower pressure drop, particles deposit locally at the inlet, while at higher pressure drop, they deposit uniformly along the direction of flow. We develop a mathematical model and use agent-based simulations to capture these essential qualitative features observed in experiments. We explore the deposition profile over a two-dimensional phase diagram defined in terms of the pressure and shear stress threshold, and show that two distinct phases exist. We explain this apparent phase transition by drawing an analogy to simple one-dimensional mass-aggregation models in which the phase transition is calculated analytically.
Collapse
Affiliation(s)
- Gess Kelly
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Navid Bizmark
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540, USA
| | - Bulbul Chakraborty
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas G Fai
- Mathematics Department and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
3
|
Iyer C, Das A, Barma M. Coarsening, condensates, and extremes in aggregation-fragmentation models. Phys Rev E 2023; 107:014122. [PMID: 36797867 DOI: 10.1103/physreve.107.014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
We use extreme value statistics to study the dynamics of coarsening in aggregation-fragmentation models which form condensates in the steady state. The dynamics is dominated by the formation of local condensates on a coarsening length scale which grows in time in both the zero range process and conserved mass aggregation model. The local condensate mass distribution exhibits scaling, which implies anomalously large fluctuations, with mean and standard deviation both proportional to the coarsening length. Remarkably, the state of the system during coarsening is governed not by the steady state, but rather a preasymptotic state in which the condensate mass fluctuates strongly.
Collapse
Affiliation(s)
- Chandrashekar Iyer
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500046, India.,UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Arghya Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500046, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
4
|
Chakraborti S, Chakraborty T, Das A, Dandekar R, Pradhan P. Transport and fluctuations in mass aggregation processes: Mobility-driven clustering. Phys Rev E 2021; 103:042133. [PMID: 34005942 DOI: 10.1103/physreve.103.042133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/31/2021] [Indexed: 11/07/2022]
Abstract
We calculate the bulk-diffusion coefficient and the conductivity in nonequilibrium conserved-mass aggregation processes on a ring. These processes involve chipping and fragmentation of masses, which diffuse on a lattice and aggregate with their neighboring masses on contact, and, under certain conditions, they exhibit a condensation transition. We find that, even in the absence of microscopic time reversibility, the systems satisfy an Einstein relation, which connects the ratio of the conductivity and the bulk-diffusion coefficient to mass fluctuation. Interestingly, when aggregation dominates over chipping, the conductivity or, equivalently, the mobility of masses, is greatly enhanced. The enhancement in the conductivity, in accordance with the Einstein relation, results in large mass fluctuations and can induce a mobility-driven clustering in the systems. Indeed, in a certain parameter regime, we show that the conductivity, along with the mass fluctuation, diverges beyond a critical density, thus characterizing the previously observed nonequilibrium condensation transition [Phys. Rev. Lett. 81, 3691 (1998)10.1103/PhysRevLett.81.3691] in terms of an instability in the conductivity. Notably, the bulk-diffusion coefficient remains finite in all cases. We find our analytic results in quite good agreement with simulations.
Collapse
Affiliation(s)
- Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.,International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Tanmoy Chakraborty
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Arghya Das
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Rahul Dandekar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
5
|
Abstract
We study the remarkable behaviour of dense active matter comprising self-propelled particles at large Péclet numbers, over a range of persistence times, from τp → 0, when the active fluid undergoes a slowing down of density relaxations leading to a glass transition as the active propulsion force f reduces, to τp → ∞, when as f reduces, the fluid jams at a critical point, with stresses along force-chains. For intermediate τp, a decrease in f drives the fluid through an intermittent phase before dynamical arrest at low f. This intermittency is a consequence of periods of jamming followed by bursts of plastic yielding associated with Eshelby deformations. On the other hand, an increase in f leads to an increase in the burst frequency; the correlated plastic events result in large scale vorticity and turbulence. Dense extreme active matter brings together the physics of glass, jamming, plasticity and turbulence, in a new state of driven classical matter. While active matter exhibits unusual dynamics at low density, high density behavior has not been explored. Mandal et al. show that extreme dense active matter, shows a rich spectrum of behaviour from intermittent plastic bursts and turbulence, to glassy states and jamming in the limit of infinite persistence time.
Collapse
|
6
|
Singha T, Barma M. Time evolution of intermittency in the passive slider problem. Phys Rev E 2018; 97:010105. [PMID: 29448379 DOI: 10.1103/physreve.97.010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 11/07/2022]
Abstract
How does a steady state with strong intermittency develop in time from an initial state which is statistically random? For passive sliders driven by various fluctuating surfaces, we show that the approach involves an indefinitely growing length scale which governs scaling properties. A simple model of sticky sliders suggests scaling forms for the time-dependent flatness and hyperflatness, both measures of intermittency and these are confirmed numerically for passive sliders driven by a Kardar-Parisi-Zhang surface. Aging properties are studied via a two-time flatness. We predict and verify numerically that the time-dependent flatness is, remarkably, a nonmonotonic function of time with different scaling forms at short and long times. The scaling description remains valid when clustering is more diffuse as for passive sliders evolving through Edwards-Wilkinson driving or under antiadvection, although exponents and scaling functions differ substantially.
Collapse
Affiliation(s)
- Tapas Singha
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad-500107, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad-500107, India
| |
Collapse
|
7
|
Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae. Sci Rep 2016; 6:38840. [PMID: 27991496 PMCID: PMC5171829 DOI: 10.1038/srep38840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022] Open
Abstract
A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.
Collapse
|
8
|
Das A, Polley A, Rao M. Phase Segregation of Passive Advective Particles in an Active Medium. PHYSICAL REVIEW LETTERS 2016; 116:068306. [PMID: 26919022 DOI: 10.1103/physrevlett.116.068306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 06/05/2023]
Abstract
Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.
Collapse
Affiliation(s)
- Amit Das
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Anirban Polley
- Raman Research Institute, C.V. Raman Avenue, Bangalore 560080, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
- Raman Research Institute, C.V. Raman Avenue, Bangalore 560080, India
| |
Collapse
|
9
|
Reuveni S, Hirschberg O, Eliazar I, Yechiali U. Occupation probabilities and fluctuations in the asymmetric simple inclusion process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042109. [PMID: 24827195 DOI: 10.1103/physreve.89.042109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 06/03/2023]
Abstract
The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and aggregation, was recently proposed as an "inclusion" counterpart of the asymmetric simple exclusion process. In this paper we present an exact closed-form expression for the probability that a given number of particles occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan's trapezoids-number arrays which generalize Catalan's numbers and Catalan's triangle. We further prove that the ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results is discussed.
Collapse
Affiliation(s)
- Shlomi Reuveni
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel and Department of Systems Biology, Harvard University, Boston, Massachusetts 02115, USA
| | - Ori Hirschberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Eliazar
- Department of Technology Management, Holon Institute of Technology, Holon 58102, Israel
| | - Uri Yechiali
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
10
|
Abstract
In this chapter, we summarize recent theoretical efforts to address a variety of issues in Golgi morphogenesis: de novo biogenesis of compartments with precise chemical identity, the transport of proteins through the Golgi, the maintenance of chemical identity, and the morphology of Golgi compartments, from the perspective of nonequilibrium physics.
Collapse
Affiliation(s)
- Pierre Sens
- Laboratoire Gulliver, CNRS-ESPCI, UMR 7083, 75231 Paris, France
| | | |
Collapse
|