1
|
Pietraszewicz J, Seweryn A, Witkowska E. Multifaceted phase ordering kinetics of an antiferromagnetic spin-1 condensate. Sci Rep 2021; 11:9296. [PMID: 33927249 PMCID: PMC8085072 DOI: 10.1038/s41598-021-88454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/07/2021] [Indexed: 11/18/2022] Open
Abstract
We study phase domain coarsening in the long time limit after a quench of magnetic field in a quasi one-dimensional spin-1 antiferromagnetic condensate. We observe that the growth of correlation length obeys scaling laws predicted by the two different models of phase ordering kinetics, namely the binary mixture and vector field. We derive regimes of clear realization for both of them. We demonstrate appearance of atypical scaling laws, which emerge in intermediate regions.
Collapse
Affiliation(s)
- Joanna Pietraszewicz
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02668, Warsaw, Poland
| | - Aleksandra Seweryn
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02668, Warsaw, Poland
| | - Emilia Witkowska
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02668, Warsaw, Poland.
| |
Collapse
|
2
|
Chai X, Lao D, Fujimoto K, Hamazaki R, Ueda M, Raman C. Magnetic Solitons in a Spin-1 Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2020; 125:030402. [PMID: 32745412 DOI: 10.1103/physrevlett.125.030402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Vector solitons are a type of solitary or nonspreading wave packet occurring in a nonlinear medium composed of multiple components. As such, a variety of synthetic systems can be constructed to explore their properties, from nonlinear optics to ultracold atoms, and even in metamaterials. Bose-Einstein condensates have a rich panoply of internal hyperfine levels, or spin components, which make them a unique platform for exploring these solitary waves. However, existing experimental work has focused largely on binary systems confined to the Manakov limit of the nonlinear equations governing the soliton behavior, where quantum magnetism plays no role. Here we observe, using a "magnetic shadowing" technique, a new type of soliton in a spinor Bose-Einstein condensate, one that exists only when the underlying interactions are antiferromagnetic and which is deeply embedded within a full spin-1 quantum system. Our approach opens up a vista for future studies of "solitonic matter" whereby multiple solitons interact with one another at deterministic locations.
Collapse
Affiliation(s)
- X Chai
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - D Lao
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - Kazuya Fujimoto
- Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Ryusuke Hamazaki
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN iTHEMS, Wako, Saitama 351-0198, Japan
| | - Masahito Ueda
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - C Raman
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| |
Collapse
|
3
|
Qiu LY, Liang HY, Yang YB, Yang HX, Tian T, Xu Y, Duan LM. Observation of generalized Kibble-Zurek mechanism across a first-order quantum phase transition in a spinor condensate. SCIENCE ADVANCES 2020; 6:eaba7292. [PMID: 32494752 PMCID: PMC7244309 DOI: 10.1126/sciadv.aba7292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum phase transitions.
Collapse
Affiliation(s)
| | | | | | - H.-X. Yang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, P.R. China
| | - T. Tian
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, P.R. China
| | - Y. Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, P.R. China
| | - L.-M. Duan
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
4
|
Lao D, Raman C, de Melo CARS. Nematic-Orbit Coupling and Nematic Density Waves in Spin-1 Condensates. PHYSICAL REVIEW LETTERS 2020; 124:173203. [PMID: 32412270 DOI: 10.1103/physrevlett.124.173203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We propose the creation of artificial nematic-orbit coupling in spin-1 Bose-Einstein condensates, in analogy with spin-orbit coupling. Using a suitably designed microwave chip, the quadratic Zeeman shift, normally uniform in space, can be made to be spatiotemporally varying, leading to a coupling between spatial and nematic degrees of freedom. A phase diagram is explored where three quantum phases with the nematic order emerge: easy axis, easy plane with single-well structure, and easy plane with double-well structure in momentum space. By including spin-dependent and spin-independent interactions, we also obtain the low energy excitation spectra in these three phases. Last, we show that the nematic-orbit coupling leads to a periodic nematic density modulation in relation to the period λ_{T} of the cosinusoidal quadratic Zeeman term. Our results point to the rich possibilities for manipulation of tensorial degrees of freedom in ultracold gases without requiring Raman lasers, and therefore, obviating light-scattering induced heating.
Collapse
Affiliation(s)
- Di Lao
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Chandra Raman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - C A R Sá de Melo
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
5
|
Tian T, Yang HX, Qiu LY, Liang HY, Yang YB, Xu Y, Duan LM. Observation of Dynamical Quantum Phase Transitions with Correspondence in an Excited State Phase Diagram. PHYSICAL REVIEW LETTERS 2020; 124:043001. [PMID: 32058743 DOI: 10.1103/physrevlett.124.043001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Dynamical quantum phase transitions are closely related to equilibrium quantum phase transitions for ground states. Here, we report an experimental observation of a dynamical quantum phase transition in a spinor condensate with correspondence in an excited state phase diagram, instead of the ground state one. We observe that the quench dynamics exhibits a nonanalytical change with respect to a parameter in the final Hamiltonian in the absence of a corresponding phase transition for the ground state there. We make a connection between this singular point and a phase transition point for the highest energy level in a subspace with zero spin magnetization of a Hamiltonian. We further show the existence of dynamical phase transitions for finite magnetization corresponding to the phase transition of the highest energy level in the subspace with the same magnetization. Our results open a door for using dynamical phase transitions as a tool to probe physics at higher energy eigenlevels of many-body Hamiltonians.
Collapse
Affiliation(s)
- T Tian
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - H-X Yang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - L-Y Qiu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - H-Y Liang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y-B Yang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - L-M Duan
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Fujimoto K, Hamazaki R, Ueda M. Flemish Strings of Magnetic Solitons and a Nonthermal Fixed Point in a One-Dimensional Antiferromagnetic Spin-1 Bose Gas. PHYSICAL REVIEW LETTERS 2019; 122:173001. [PMID: 31107065 DOI: 10.1103/physrevlett.122.173001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Thermalization in a quenched one-dimensional antiferromagnetic spin-1 Bose gas is shown to proceed via a nonthermal fixed point through annihilation of Flemish-string bound states of magnetic solitons. A possible experimental situation is discussed.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryusuke Hamazaki
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahito Ueda
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Seo SW, Kang S, Kwon WJ, Shin YI. Half-Quantum Vortices in an Antiferromagnetic Spinor Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2015; 115:015301. [PMID: 26182102 DOI: 10.1103/physrevlett.115.015301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 06/04/2023]
Abstract
We report on the observation of half-quantum vortices (HQVs) in the easy-plane polar phase of an antiferromagnetic spinor Bose-Einstein condensate. Using in situ magnetization-sensitive imaging, we observe that pairs of HQVs with opposite core magnetization are generated when singly charged quantum vortices are injected into the condensate. The dynamics of HQV pair formation is characterized by measuring the temporal evolutions of the pair separation distance and the core magnetization, which reveals the short-range nature of the repulsive interactions between the HQVs. We find that spin fluctuations arising from thermal population of transverse magnon excitations do not significantly affect the HQV pair formation dynamics. Our results demonstrate the instability of a singly charged vortex in the antiferromagnetic spinor condensate.
Collapse
Affiliation(s)
- Sang Won Seo
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Korea
| | - Seji Kang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Korea
| | - Woo Jin Kwon
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Korea
| | - Yong-il Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
8
|
Chattopadhyaya M, Alam MM, Sarkar D, Chakrabarti S. Electrically controlled eight-spin-qubit entangled-state generation in a molecular break junction. Chemphyschem 2014; 15:1747-51. [PMID: 24764056 DOI: 10.1002/cphc.201400029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/14/2014] [Indexed: 11/10/2022]
Abstract
The generation of spin-based multi-qubit entangled states in the presence of an electric field is one of the most challenging tasks in current quantum-computing research. Such examples are still elusive. By using non-equilibrium Green's function-based quantum-transport calculations in combination with non-collinear spin density functional theory, we report that an eight-spin-qubit entangled state can be generated with the high-spin state of a dinuclear Fe(II) complex when the system is placed in a molecular break junction. The possible gate operation scheme, gating time, and decoherence issues have been carefully addressed. Furthermore, our calculations reveal that the preservation of the high spin state of this complex is possible if the experimentalists keep the electric-field strength below 0.78 V nm(-1). In brief, the present study offers a unique way to realize the first example of a multi-qubit entangled state by electrical means only.
Collapse
|
9
|
Saito H, Kawaguchi Y, Ueda M. Kibble-Zurek mechanism in a trapped ferromagnetic Bose-Einstein condensate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:404212. [PMID: 24025530 DOI: 10.1088/0953-8984/25/40/404212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Spontaneous spin vortex formation in a magnetic phase transition of a trapped spin-1 Bose-Einstein condensate is investigated based on mean-field theory. In a harmonic trapping potential, an inhomogeneous atomic density leads to spatial variations of the critical point, magnetization time, and spin correlation length. The Kibble-Zurek phenomena are shown to emerge even in such inhomogeneous spinor condensates, when the quench of the quadratic Zeeman energy is fast enough. For slow quench, the magnetized region gradually expands from the center of the trap, pushing out spin vortices, which hinders the Kibble-Zurek mechanism from occurring. The case of a toroidal trapping potential is also discussed.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585, Japan
| | | | | |
Collapse
|