1
|
Williams-Noonan BJ, Kulkarni K, Todorova N, Franceschi M, Wilde C, Borgo MPD, Serpell LC, Aguilar MI, Yarovsky I. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311103. [PMID: 38489817 DOI: 10.1002/adma.202311103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated β3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated β3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.
Collapse
Affiliation(s)
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matteo Franceschi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher Wilde
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
2
|
Yokoyama K, Barbour E, Hirschkind R, Martinez Hernandez B, Hausrath K, Lam T. Protein Corona Formation and Aggregation of Amyloid β 1-40-Coated Gold Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1728-1746. [PMID: 38194428 DOI: 10.1021/acs.langmuir.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Amyloid fibrillogenesis is a pathogenic protein aggregation process that occurs through a highly ordered process of protein-protein interactions. To better understand the protein-protein interactions involved in amyloid fibril formation, we formed nanogold colloid aggregates by stepwise additions of ∼2 nmol of amyloid β 1-40 peptide (Aβ1-40) at pH ∼3.7 and ∼25 °C. The processes of protein corona formation and building of gold colloid [diameters (d) of 20 and 80 nm] aggregates were confirmed by a red-shift of the surface plasmon resonance (SPR) band, λpeak, as the number of Aβ1-40 peptides [N(Aβ1-40)] increased. The normalized red-shift of λpeak, Δλ, was correlated with the degree of protein aggregation, and this process was approximated as the adsorption isotherm explained by the Langmuir-Freundlich model. As the coverage fraction (θ) was analyzed as a function of ϕ, which is the N(Aβ1-40) per total surface area of nanogold colloids available for adsorption, the parameters for explaining the Langmuir-Freundlich model were in good agreement for both 20 and 80 nm gold, indicating that ϕ could define the stage of the aggregation process. Surface-enhanced Raman scattering (SERS) imaging was conducted at designated values of ϕ and suggested that a protein-gold surface interaction during the initial adsorption stage may be dependent on the nanosize. The 20 nm gold case seems to prefer a relatively smaller contacting section, such as a -C-N or C═C bond, but a plane of the benzene ring may play a significant role for 80 nm gold. Regardless of the size of the particles, the β-sheet and random coil conformations were considered to be used to form gold colloid aggregates. The methodology developed in this study allows for new insights into protein-protein interactions at distinct stages of aggregation.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Eli Barbour
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Rachel Hirschkind
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Bryan Martinez Hernandez
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Kaylee Hausrath
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| | - Theresa Lam
- Department of Chemistry, The State University of New York Geneseo College, 1 College Circle, Geneseo, New York 14454, United States
| |
Collapse
|
3
|
Nguyen PH, Derreumaux P. Multistep molecular mechanisms of Aβ16-22 fibril formation revealed by lattice Monte Carlo simulations. J Chem Phys 2023; 158:235101. [PMID: 37318171 DOI: 10.1063/5.0149419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
As a model of self-assembly from disordered monomers to fibrils, the amyloid-β fragment Aβ16-22 was subject to past numerous experimental and computational studies. Because dynamics information between milliseconds and seconds cannot be assessed by both studies, we lack a full understanding of its oligomerization. Lattice simulations are particularly well suited to capture pathways to fibrils. In this study, we explored the aggregation of 10 Aβ16-22 peptides using 65 lattice Monte Carlo simulations, each simulation consisting of 3 × 109 steps. Based on a total of 24 and 41 simulations that converge and do not converge to the fibril state, respectively, we are able to reveal the diversity of the pathways leading to fibril structure and the conformational traps slowing down the fibril formation.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
4
|
Nguyen PH, Sterpone F, Derreumaux P. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. J Phys Chem B 2022; 126:10317-10326. [PMID: 36469912 DOI: 10.1021/acs.jpcb.2c06375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aβ peptides.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| |
Collapse
|
5
|
Wu K, Sun W, Li D, Diao J, Xiu P. Inhibition of Amyloid Nucleation by Steric Hindrance. J Phys Chem B 2022; 126:10045-10054. [PMID: 36417323 DOI: 10.1021/acs.jpcb.2c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a β-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius RS, which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of RS. As RS increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large RS were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.
Collapse
Affiliation(s)
- Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
6
|
Tang X, Han W. Multiscale Exploration of Concentration-Dependent Amyloid-β(16-21) Amyloid Nucleation. J Phys Chem Lett 2022; 13:5009-5016. [PMID: 35649244 DOI: 10.1021/acs.jpclett.2c00685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic descriptions of peptide aggregation nucleation remain lacking due to the difficulty of exploring complex configurational spaces on long time scales. To elucidate this process, we develop a multiscale approach combining a metadynamics-based method with cluster statistical mechanics to derive concentration-dependent free energy surfaces of nucleation at near-atomic resolution. A kinetic transition network of nucleation is then constructed and employed to systematically explore nucleation pathways and kinetics through stochastic simulations. This approach is applied to describe Aβ16-21 amyloid nucleation, revealing a two-step mechanism involving disordered aggregates at millimolar concentration, and an unexpected mechanism at submillimolar concentrations that exhibits kinetics reminiscent of classical nucleation but atypical pathways involving growing clusters with structured cores wrapped by disordered surface. When this atypical mechanism is operative, critical nucleus size can be reflected by the nucleation reaction order. Collectively, our approach paves the way for a more quantitative and detailed understanding of peptide aggregation nucleation.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
7
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
8
|
Tachi Y, Itoh SG, Okumura H. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophys Physicobiol 2022; 19:1-18. [PMID: 35666692 PMCID: PMC9135617 DOI: 10.2142/biophysico.bppb-v19.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuhei Tachi
- Department of Physics, Graduate school of Science, Nagoya University
| | - Satoru G. Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences
| |
Collapse
|
9
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Leite JP, Gimeno A, Taboada P, Jiménez-Barbero JJ, Gales L. Dissection of the key steps of amyloid-β peptide 1-40 fibrillogenesis. Int J Biol Macromol 2020; 164:2240-2246. [PMID: 32771514 DOI: 10.1016/j.ijbiomac.2020.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022]
Abstract
The aggregation kinetics of Aβ1-40 peptide was characterized using a synergistic approach by a combination of nuclear magnetic resonance, thioflavin-T fluorescence, transmission electron microscopy and dynamic light scattering. A major finding is the experimental detection of high molecular weight oligomers (HMWO) that converts into fibrils nuclei. Our observations are consistent with a mechanism of Aβ1-40 fibrillogenesis that includes the following key steps: i) slow formation of HMWO (Rh ~ 20 nm); ii) conversion of the HMWO into more compact Rh ~ 10 nm fibrils nuclei; iii) fast formation of additional fibrils nuclei through fibril surface catalysed processes; and iv) growth of fibrils by addition of soluble Aβ species. Moreover, NMR diffusion experiments show that at 37 °C soluble Aβ1-40 remains intrinsically disordered and mostly in monomeric form despite evidences of the presence of dimers and/or other small oligomers. A mathematical model is proposed to simulate the aggregation kinetics of Aβ1-40.
Collapse
Affiliation(s)
- José P Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto, Portugal
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, 15782 Campus Vida, Universidade de Santiago de Compostela, Spain
| | - Jesús J Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain; Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain; Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto, Portugal.
| |
Collapse
|
11
|
Liao Q. Enhanced sampling and free energy calculations for protein simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:177-213. [PMID: 32145945 DOI: 10.1016/bs.pmbts.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulation is a powerful computational technique to study biomolecular systems, which complements experiments by providing insights into the structural dynamics relevant to biological functions at atomic scale. It can also be used to calculate the free energy landscapes of the conformational transitions to better understand the functions of the biomolecules. However, the sampling of biomolecular configurations is limited by the free energy barriers that need to be overcome, leading to considerable gaps between the timescales reached by MD simulation and those governing biological processes. To address this issue, many enhanced sampling methodologies have been developed to increase the sampling efficiency of molecular dynamics simulations and free energy calculations. Usually, enhanced sampling algorithms can be classified into methods based on collective variables (CV-based) and approaches which do not require predefined CVs (CV-free). In this chapter, the theoretical basis of free energy estimation is briefly reviewed first, followed by the reviews of the most common CV-based and CV-free methods including the presentation of some examples and recent developments. Finally, the combination of different enhanced sampling methods is discussed.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Nguyen PH, Sterpone F, Derreumaux P. Aggregation of disease-related peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:435-460. [PMID: 32145950 DOI: 10.1016/bs.pmbts.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein misfolding and aggregation of amyloid proteins is the fundamental cause of more than 20 diseases. Molecular mechanisms of the self-assembly and the formation of the toxic aggregates are still elusive. Computer simulations have been intensively used to study the aggregation of amyloid peptides of various amino acid lengths related to neurodegenerative diseases. We review atomistic and coarse-grained simulations of short amyloid peptides aimed at determining their transient oligomeric structures and the early and late aggregation steps.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
14
|
Chiricotto M, Melchionna S, Derreumaux P, Sterpone F. Multiscale Aggregation of the Amyloid Aβ 16-22 Peptide: From Disordered Coagulation and Lateral Branching to Amorphous Prefibrils. J Phys Chem Lett 2019; 10:1594-1599. [PMID: 30892042 DOI: 10.1021/acs.jpclett.9b00423] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work we investigate the multiscale dynamics of the aggregation process of an amyloid peptide, Aβ16-22. By performing massive coarse-grained simulations at the quasi-atomistic resolution and including hydrodynamic effects, we followed the formation and growth of a large elongated aggregate and its slow structuring. The elongation proceeds via a two-step nucleation mechanism with disordered aggregates formed initially and subsequently fusing to elongate the amorphous prefibril. A variety of coagulation events coexist, including lateral growth. The latter mechanism, sustained by long-range hydrodynamics correlations, actually can create a large branched structure spanning a few tens of nanometers. Our findings confirm the experimental hypothesis of a critical contribution of lateral growth to the amyloid aggregation kinetics and the capability of our model to sample critical structures like prefibril hosting annular pores.
Collapse
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080 , Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Simone Melchionna
- ISC-CNR, Dipartimento di Fisica , Universita Sapienza , P.le A. Moro 5 , 00185 Rome , Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080 , Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080 , Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
15
|
Itoh SG, Yagi-Utsumi M, Kato K, Okumura H. Effects of a Hydrophilic/Hydrophobic Interface on Amyloid-β Peptides Studied by Molecular Dynamics Simulations and NMR Experiments. J Phys Chem B 2019; 123:160-169. [PMID: 30543290 DOI: 10.1021/acs.jpcb.8b11609] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligomer formation of amyloid-β peptides (Aβ) is accelerated at a hydrophilic/hydrophobic interface. However, details of the acceleration mechanism have not been elucidated. To understand the effects of the interface on oligomerization at the atomic level, we performed molecular dynamics simulations for an Aβ40 monomer in the presence and absence of the hydrophilic/hydrophobic interface. Nuclear magnetic resonance experiments of Aβ40 peptides with gangliosidic micelles were also carried out. In the simulations and experiments, the hydrophobic residues of Aβ40 bound to the interface stably. Moreover, we found that Aβ40 formed a hairpin structure at the interface more readily than in bulk water. From these results, we discussed the acceleration mechanism of the oligomer formation at the interface.
Collapse
Affiliation(s)
- Satoru G Itoh
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Structural Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8585 , Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Functional Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8787 , Japan.,Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Aichi 465-8603 , Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Functional Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8787 , Japan.,Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Aichi 465-8603 , Japan
| | - Hisashi Okumura
- Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8585 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan.,Department of Structural Molecular Science , SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Aichi 444-8585 , Japan
| |
Collapse
|
16
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
17
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Han MH, Chiu CC. Fast estimation of protein conformational preference at air/water interface via molecular dynamics simulations. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Carballo-Pacheco M, Ismail AE, Strodel B. On the Applicability of Force Fields To Study the Aggregation of Amyloidogenic Peptides Using Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6063-6075. [PMID: 30336669 DOI: 10.1021/acs.jctc.8b00579] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations play an essential role in understanding biomolecular processes such as protein aggregation at temporal and spatial resolutions which are not attainable by experimental methods. For a correct modeling of protein aggregation, force fields must accurately represent molecular interactions. Here, we study the effect of five different force fields on the oligomer formation of Alzheimer's Aβ16-22 peptide and two of its mutants: Aβ16-22(F19V,F20V), which does not form fibrils, and Aβ16-22(F19L) which forms fibrils faster than the wild type. We observe that while oligomer formation kinetics depends strongly on the force field, structural properties, such as the most relevant protein-protein contacts, are similar between them. The oligomer formation kinetics obtained with different force fields differ more from each other than the kinetics between aggregating and nonaggregating peptides simulated with a single force field. We discuss the difficulties in comparing atomistic simulations of amyloid oligomer formation with experimental observables.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Ahmed E Ismail
- AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany.,Aachener Verfahrenstechnik, Faculty of Mechanical Engineering , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
20
|
Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. Secondary nucleation in amyloid formation. Chem Commun (Camb) 2018; 54:8667-8684. [PMID: 29978862 DOI: 10.1039/c8cc02204f] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleation of new peptide and protein aggregates on the surfaces of amyloid fibrils of the same peptide or protein has emerged in the past two decades as a major pathway for both the generation of molecular species responsible for cellular toxicity and for the autocatalytic proliferation of peptide and protein aggregates. A key question in current research is the molecular mechanism and driving forces governing such processes, known as secondary nucleation. In this context, the analogies with other self-assembling systems for which monomer-dependent secondary nucleation has been studied for more than a century provide a valuable source of inspiration. Here, we present a short overview of this background and then review recent results regarding secondary nucleation of amyloid-forming peptides and proteins, focusing in particular on the amyloid β peptide (Aβ) from Alzheimer's disease, with some examples regarding α-synuclein from Parkinson's disease. Monomer-dependent secondary nucleation of Aβ was discovered using a combination of kinetic experiments, global analysis, seeding experiments and selective isotope-enrichment, which pinpoint the monomer as the origin of new aggregates in a fibril-catalyzed reaction. Insights into driving forces are gained from variations of solution conditions, temperature and peptide sequence. Selective inhibition of secondary nucleation is explored as an effective means to limit oligomer production and toxicity. We also review experiments aimed at finding interaction partners of oligomers generated by secondary nucleation in an ongoing aggregation process. At the end of this feature article we bring forward outstanding questions and testable mechanistic hypotheses regarding monomer-dependent secondary nucleation in amyloid formation.
Collapse
Affiliation(s)
- Mattias Törnquist
- Lund University, Department of Biochemistry and Structural Biology, Chemical Centre, PO Box 124, SE221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodriguez A, d'Errico M, Facco E, Laio A. Computing the Free Energy without Collective Variables. J Chem Theory Comput 2018; 14:1206-1215. [PMID: 29401379 DOI: 10.1021/acs.jctc.7b00916] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce an approach for computing the free energy and the probability density in high-dimensional spaces, such as those explored in molecular dynamics simulations of biomolecules. The approach exploits the presence of correlations between the coordinates, induced, in molecular dynamics, by the chemical nature of the molecules. Due to these correlations, the data points lay on a manifold that can be highly curved and twisted, but whose dimension is normally small. We estimate the free energies by finding, with a statistical test, the largest neighborhood in which the free energy in the embedding manifold can be considered constant. Importantly, this procedure does not require defining explicitly the manifold and provides an estimate of the error that is approximately unbiased up to large dimensions. We test this approach on artificial and real data sets, demonstrating that the free energy estimates are reliable for data sets on manifolds of dimension up to ∼10, embedded in an arbitrarily large space. In practical applications our method permits the estimation of the free energy in a space of reduced dimensionality without specifying the collective variables defining this space.
Collapse
Affiliation(s)
- Alex Rodriguez
- SISSA, Scuola Internazionale Superiore Studi Avanzati , via Bonomea 265 , I-34136 Trieste , Italy
| | - Maria d'Errico
- SISSA, Scuola Internazionale Superiore Studi Avanzati , via Bonomea 265 , I-34136 Trieste , Italy
| | - Elena Facco
- SISSA, Scuola Internazionale Superiore Studi Avanzati , via Bonomea 265 , I-34136 Trieste , Italy
| | - Alessandro Laio
- SISSA, Scuola Internazionale Superiore Studi Avanzati , via Bonomea 265 , I-34136 Trieste , Italy.,ICTP, International Centre for Theoretical Physics , Strada Costiera 11 , I-34100 , Trieste , Italy
| |
Collapse
|
22
|
Urbic T, Najem S, Dias CL. Thermodynamic properties of amyloid fibrils in equilibrium. Biophys Chem 2017; 231:155-160. [PMID: 28318905 PMCID: PMC5589490 DOI: 10.1016/j.bpc.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
Abstract
In this manuscript we use a two-dimensional coarse-grained model to study how amyloid fibrils grow towards an equilibrium state where they coexist with proteins dissolved in a solution. Free-energies to dissociate proteins from fibrils are estimated from the residual concentration of dissolved proteins. Consistent with experiments, the concentration of proteins in solution affects the growth rate of fibrils but not their equilibrium state. Also, studies of the temperature dependence of the equilibrium state can be used to estimate thermodynamic quantities, e.g., heat capacity and entropy.
Collapse
Affiliation(s)
- Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000, Slovenia.
| | - Sara Najem
- National Center for Remote Sensing, National Council for Scientific Research (CNRS), Riad al Soloh, 1107 2260 Beirut, Lebanon
| | - Cristiano L Dias
- New Jersey Institute of Technology, Physics Department, Newark,NJ 07042-1982,United States
| |
Collapse
|
23
|
Bouzakraoui S, Mousseau N. Structural and thermodynamical properties of early human amylin oligomers using replica exchange molecular dynamics: mutation effect of three key residues F15, H18 and F23. Phys Chem Chem Phys 2017; 19:31290-31299. [DOI: 10.1039/c7cp06463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A schematic representation of a possible oligomerization mechanism of hIAPP. β-Hairpins are proposed to self-assemble into early ordered oligomers by side-to-side association.
Collapse
Affiliation(s)
- S. Bouzakraoui
- Laboratoire d'ingénierie des Matériaux et d'Environnement: Modélisation et Application
- Faculté des Sciences
- Université Ibn Tofail
- Kénitra
- Morocco
| | - N. Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM)
- Université de Montréal
- Montréal
- Canada
| |
Collapse
|
24
|
Yang YI, Zhang J, Che X, Yang L, Gao YQ. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling. J Chem Phys 2016; 144:094105. [PMID: 26957155 DOI: 10.1063/1.4943004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ - ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C-H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.
Collapse
Affiliation(s)
- Y Isaac Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing Che
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Matthes D, Gapsys V, Brennecke JT, de Groot BL. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Sci Rep 2016; 6:33156. [PMID: 27616019 PMCID: PMC5018807 DOI: 10.1038/srep33156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic peptides at atomistic resolution on the μs time scale. A consensus approach has been adopted to analyse the simulations in multiple force fields, yielding an in-depth characterization of pre-fibrillar oligomers and their global and local structure properties. A collision cross section analysis revealed structurally heterogeneous aggregate ensembles for the individual oligomeric states that lack a single defined quaternary structure during the pre-nucleation phase. To gain insight into the conformational space sampled in early aggregates, we probed their substructure and found emerging β-sheet subunit layers and a multitude of ordered intermolecular β-structure motifs with growing aggregate size. Among those, anti-parallel out-of-register β-strands compatible with toxic β-barrel oligomers were particularly prevalent already in smaller aggregates and formed prior to ordered fibrillar structure elements. Notably, also distinct fibril-like conformations emerged in the oligomeric state and underscore the notion that pre-nucleated oligomers serve as a critical intermediate step on-pathway to fibrils.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Julian T Brennecke
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
26
|
Wang Y, Shao Q, Hall CK. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways. J Biol Chem 2016; 291:22093-22105. [PMID: 27576687 DOI: 10.1074/jbc.m116.744573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 12/14/2022] Open
Abstract
The prion diseases are a family of fatal neurodegenerative diseases associated with the misfolding and accumulation of normal prion protein (PrPC) into its pathogenic scrapie form (PrPSc). Understanding the fundamentals of prion protein aggregation and the molecular architecture of PrPSc is key to unraveling the pathology of prion diseases. Our work investigates the early-stage aggregation of three prion protein peptides, corresponding to residues 120-144 of human (Hu), bank vole (BV), and Syrian hamster (SHa) prion protein, from disordered monomers to β-sheet-rich fibrillar structures. Using 12 μs discontinuous molecular dynamics simulations combined with the PRIME20 force field, we find that the Hu-, BV-, and SHaPrP(120-144) aggregate via multiple nucleation-dependent pathways to form U-shaped, S-shaped, and Ω-shaped protofilaments. The S-shaped HuPrP(120-144) protofilament is similar to the amyloid core structure of HuPrP(112-141) predicted by Zweckstetter. HuPrP(120-144) has a shorter aggregation lag phase than BVPrP(120-144) followed by SHaPrP(120-144), consistent with experimental findings. Two amino acid substitutions I138M and I139M retard the formation of parallel in-register β-sheet dimers during the nucleation stage by increasing side chain-side chain association and reducing side chain interaction specificity. On average, HuPrP(120-144) aggregates contain more parallel β-sheet content than those formed by BV- and SHaPrP(120-144). Deletion of the C-terminal residues 138-144 prevents formation of fibrillar structures in agreement with the experiment. This work sheds light on the amyloid core structures underlying prion strains and how I138M, I139M, and S143N affect prion protein aggregation kinetics.
Collapse
Affiliation(s)
- Yiming Wang
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Qing Shao
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Carol K Hall
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| |
Collapse
|
27
|
Chiricotto M, Tran TT, Nguyen PH, Melchionna S, Sterpone F, Derreumaux P. Coarse-grained and All-atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Simone Melchionna
- Istituto Sistemi Complessi; Consiglio Nazionale delle Ricerche; P. le A. Moro 2 00185 Rome Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
28
|
Itoh SG, Okumura H. Oligomer Formation of Amyloid-β(29-42) from Its Monomers Using the Hamiltonian Replica-Permutation Molecular Dynamics Simulation. J Phys Chem B 2016; 120:6555-61. [PMID: 27281682 DOI: 10.1021/acs.jpcb.6b03828] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligomers of amyloid-β peptides (Aβ) are formed during the early stage of the amyloidogenesis process and exhibit neurotoxicity. The oligomer formation process of Aβ and even that of Aβ fragments are still poorly understood, though understanding of these processes is essential for remedying Alzheimer's disease. In order to better understand the oligomerization process of the C-terminal Aβ fragment Aβ(29-42) at the atomic level, we performed the Hamiltonian replica-permutation molecular dynamics simulation with Aβ(29-42) molecules using the explicit water solvent model. We observed that oligomers increased in size through the sequential addition of monomers to the oligomer, rather than through the assembly of small oligomers. Moreover, solvent effects played an important role in this oligomerization process.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,Department of Structural Molecular Science, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| | - Hisashi Okumura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,Department of Structural Molecular Science, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
29
|
Bellucci L, Ardèvol A, Parrinello M, Lutz H, Lu H, Weidner T, Corni S. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide. NANOSCALE 2016; 8:8737-8748. [PMID: 27064268 DOI: 10.1039/c6nr01539e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.
Collapse
Affiliation(s)
- Luca Bellucci
- Dipartimento FIM, Università di Modena e Reggio Emilia, I-41125, Modena, Italy. and Centro S3, CNR-NANO Istituto Nanoscienze, I-41125, Modena, Italy.
| | - Albert Ardèvol
- Department of Chemistry and Applied Biosciences, ETH-Zurich, Switzerland and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900, Lugano, Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH-Zurich, Switzerland and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900, Lugano, Switzerland
| | - Helmut Lutz
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Stefano Corni
- Centro S3, CNR-NANO Istituto Nanoscienze, I-41125, Modena, Italy. and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900, Lugano, Switzerland
| |
Collapse
|
30
|
Luiken JA, Bolhuis PG. Prediction of a stable associated liquid of short amyloidogenic peptides. Phys Chem Chem Phys 2016; 17:10556-67. [PMID: 25804723 DOI: 10.1039/c5cp00284b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloid fibril formation is believed to be a nucleation-controlled process. Depending on the nature of peptide sequence, fibril nucleation can occur in one step, straight from a dilute solution, or in multiple steps via oligomers or disordered aggregates. What determines this process is poorly understood. Since the fibril formation kinetics is driven by thermodynamic forces, knowledge of the phase behavior is crucial. Here, we investigated the phase behavior of three short peptide sequences of varying side-chain hydrophobicity. Replica exchange molecular dynamics simulations of a mid-resolution model indicate that the weakly hydrophobic peptide forms fibrils directly from solution, whereas the most hydrophobic peptide forms a dense liquid phase before crystallizing into ordered fibrils at low temperatures. For the medium hydrophobic peptide we found evidence of a novel additional transition to a liquid phase consisting of clusters of aligned peptides, implying a three-step nucleation process. We tested the robustness of this prediction by applying Wertheim's theory and statistical associating fluid theory to a hard-sphere model dressed with isotropic and anisotropic attractions. We found that the ratio of interaction strengths strongly affects the phase behavior, and under certain conditions indeed gives rise to a stable polymerized liquid phase. The peptide clusters in the associated liquid tend to be slow and long-lived, which may give the oligomer droplet more time to act as a toxic oligomer, before turning into a fibril.
Collapse
Affiliation(s)
- Jurriaan A Luiken
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
Carballo-Pacheco M, Strodel B. Advances in the Simulation of Protein Aggregation at the Atomistic Scale. J Phys Chem B 2016; 120:2991-9. [PMID: 26965454 DOI: 10.1021/acs.jpcb.6b00059] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation into highly structured amyloid fibrils is associated with various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Amyloids can also have normal biological functions and, in the future, could be used as the basis for novel nanoscale materials. However, a full understanding of the physicochemical forces that drive protein aggregation is still lacking. Such understanding is crucial for the development of drugs that can effectively inhibit aberrant amyloid aggregation and for the directed design of functional amyloids. Atomistic simulations can help understand protein aggregation. In particular, atomistic simulations can be used to study the initial formation of toxic oligomers which are hard to characterize experimentally and to understand the difference in aggregation behavior between different amyloidogenic peptides. Here, we review the latest atomistic simulations of protein aggregation, concentrating on amyloidogenic protein fragments, and provide an outlook for the future in this field.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,AICES Graduate School, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Zou Y, Sun Y, Zhu Y, Ma B, Nussinov R, Zhang Q. Critical Nucleus Structure and Aggregation Mechanism of the C-terminal Fragment of Copper-Zinc Superoxide Dismutase Protein. ACS Chem Neurosci 2016; 7:286-96. [PMID: 26815332 PMCID: PMC7842942 DOI: 10.1021/acschemneuro.5b00242] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aggregation of the copper-zinc superoxide dismutase (SOD1) protein is linked to familial amyotrophic lateral sclerosis, a progressive neurodegenerative disease. A recent experimental study has shown that the (147)GVIGIAQ(153) SOD1 C-terminal segment not only forms amyloid fibrils in isolation but also accelerates the aggregation of full-length SOD1, while substitution of isoleucine at site 149 by proline blocks its fibril formation. Amyloid formation is a nucleation-polymerization process. In this study, we investigated the oligomerization and the nucleus structure of this heptapeptide. By performing extensive replica-exchange molecular dynamics (REMD) simulations and conventional MD simulations, we found that the GVIGIAQ hexamers can adopt highly ordered bilayer β-sheets and β-barrels. In contrast, substitution of I149 by proline significantly reduces the β-sheet probability and results in the disappearance of bilayer β-sheet structures and the increase of disordered hexamers. We identified mixed parallel-antiparallel bilayer β-sheets in both REMD and conventional MD simulations and provided the conformational transition from the experimentally observed parallel bilayer sheets to the mixed parallel-antiparallel bilayer β-sheets. Our simulations suggest that the critical nucleus consists of six peptide chains and two additional peptide chains strongly stabilize this critical nucleus. The stabilized octamer is able to recruit additional random peptides into the β-sheet. Therefore, our simulations provide insights into the critical nucleus formation and the smallest stable nucleus of the (147)GVIGIAQ(153) peptide.
Collapse
Affiliation(s)
- Yu Zou
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, China
| | - Yunxiang Sun
- Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuzhen Zhu
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, China
| |
Collapse
|
33
|
Tian P, Lindorff-Larsen K, Boomsma W, Jensen MH, Otzen DE. A Monte Carlo Study of the Early Steps of Functional Amyloid Formation. PLoS One 2016; 11:e0146096. [PMID: 26745180 PMCID: PMC4706413 DOI: 10.1371/journal.pone.0146096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
In addition to their well-known roles in neurodegenerative diseases and amyloidoses, amyloid structures also assume important functional roles in the cell. Although functional amyloid shares many physiochemical properties with its pathogenic counterpart, it is evolutionarily optimized to avoid cytotoxicity. This makes it an interesting study case for aggregation phenomenon in general. One of the most well-known examples of a functional amyloid, E. coli curli, is an essential component in the formation of bacterial biofilm, and is primarily formed by aggregates of the protein CsgA. Previous studies have shown that the minor sequence variations observed in the five different subrepeats (R1-R5), which comprise the CsgA primary sequence, have a substantial influence on their individual aggregation propensities. Using a recently described diffusion-optimized enhanced sampling approach for Monte Carlo simulations, we here investigate the equilibrium properties of the monomeric and dimeric states of these subrepeats, to probe whether structural properties observed in these early stage oligomers are decisive for the characteristics of the resulting aggregate. We show that the dimerization propensities of these peptides have strong correlations with their propensity for amyloid formation, and provide structural insights into the inter- and intramolecular contacts that appear to be essential in this process.
Collapse
Affiliation(s)
- Pengfei Tian
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.,Linderstrøm-Lang Centre for Protein Science and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Linderstrøm-Lang Centre for Protein Science and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Mogens Høgh Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
34
|
Do TN, Choy WY, Karttunen M. Accelerating the Conformational Sampling of Intrinsically Disordered Proteins. J Chem Theory Comput 2015; 10:5081-94. [PMID: 26584388 DOI: 10.1021/ct5004803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.
Collapse
Affiliation(s)
- Trang Nhu Do
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western Ontario , 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Luiken JA, Bolhuis PG. Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides. J Phys Chem B 2015; 119:12568-79. [DOI: 10.1021/acs.jpcb.5b05799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jurriaan A. Luiken
- van ’t
Hoff Institute
for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, Netherlands
| | - Peter G. Bolhuis
- van ’t
Hoff Institute
for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, Netherlands
| |
Collapse
|
36
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
37
|
Affiliation(s)
- Zhaoqian Su
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L. Dias
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
38
|
Xu L, Chen Y, Wang X. Assembly of Amyloid β Peptides in the Presence of Fibril Seeds: One-Pot Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2014; 118:9238-46. [DOI: 10.1021/jp505551m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Liang Xu
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Yonggang Chen
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Xiaojuan Wang
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| |
Collapse
|
39
|
Bian Y, Zhang J, Wang J, Wang W. On the accuracy of metadynamics and its variations in a protein folding process. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.931680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre JF, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Nguyen PH, Derreumaux P. The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem Soc Rev 2014; 43:4871-93. [PMID: 24759934 PMCID: PMC4426487 DOI: 10.1039/c4cs00048j] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang YI, Gao YQ. Computer Simulation Studies of Aβ37–42 Aggregation Thermodynamics and Kinetics in Water and Salt Solution. J Phys Chem B 2014; 119:662-70. [DOI: 10.1021/jp502169b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Y. Isaac Yang
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Nguyen P, Derreumaux P. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Acc Chem Res 2014; 47:603-11. [PMID: 24368046 DOI: 10.1021/ar4002075] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolution has fine-tuned proteins to accomplish a variety of tasks. Yet, with aging, some proteins assemble into harmful amyloid aggregates associated with neurodegenerative diseases, such as Alzheimer's disease (AD), which presents a complex and costly challenge to our society. Thus, far, drug after drug has failed to slow the progression of AD, characterized by the self-assembly of the 39-43 amino acid β-amyloid (Aβ) protein into extracellular senile plaques that form a cross-β structure. While there is experimental evidence that the Aβ small oligomers are the primary toxic species, standard tools of biology have failed to provide structures of these transient, inhomogeneous assemblies. Despite extensive experimental studies, researchers have not successfully characterized the nucleus ensemble, the starting point for rapid fibril formation. Similarly scientists do not have atomic data to show how the compounds that reduce both fibril formation and toxicity in cells bind to Aβ42 oligomers. In this context, computer simulations are important tools for gaining insights into the self-assembly of amyloid peptides and the molecular mechanism of inhibitors. This Account reviews what analytical models and simulations at different time and length scales tell us about the dynamics, kinetics, and thermodynamics of amyloid fibril formation and, notably, the nucleation process. Though coarse-grained and mesoscopic protein models approximate atomistic details by averaging out unimportant degrees of freedom, they provide generic features of amyloid formation and insights into mechanistic details of the self-assembly process. The thermodynamics and kinetics vary from linear peptides adopting straight β-strands in fibrils to longer peptides adopting in parallel U shaped conformations in fibrils. In addition, these properties change with the balance between electrostatic and hydrophobic interactions and the intrinsic disorder of the system. However, simulations suggest that the critical nucleus size might be on the order of 20 chains under physiological conditions. The transition state might be characterized by a simultaneous change from mixed antiparallel/parallel β-strands with random side-chain packing to the final antiparallel or parallel states with the steric zipper packing of the side chains. Second, we review our current computer-based knowledge of the 3D structures of inhibitors with Aβ42 monomer and oligomers, a prerequisite for developing new drugs against AD. Recent extensive all-atom simulations of Aβ42 dimers with known inhibitors such as the green tea compound epigallocatechin-3-gallate and 1,4-naphthoquinon-2-yl-l-tryptophan provide a spectrum of initial Aβ42/inhibitor structures useful for screening and drug design. We conclude by discussing future directions that may offer opportunities to fully understand nucleation and further AD drug development.
Collapse
Affiliation(s)
- Phuong Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France, IUF, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
43
|
Barz B, Wales DJ, Strodel B. A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J Phys Chem B 2014; 118:1003-11. [PMID: 24401100 PMCID: PMC3908877 DOI: 10.1021/jp412648u] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is generally accepted that oligomers of aggregating proteins play an important role in the onset of neurodegenerative diseases. While in silico aggregation studies of full length amyloidogenic proteins are computationally expensive, the assembly of short protein fragments derived from these proteins with similar aggregating properties has been extensively studied. In the present work, molecular dynamics simulations are performed to follow peptide aggregation on the microsecond time scale. By defining aggregation states, we identify transition networks, disconnectivity graphs, and first passage time distributions to describe the kinetics of the assembly process. This approach unravels differences in the aggregation into hexamers of two peptides with different primary structures. The first is GNNQQNY, a hydrophilic fragment from the prion protein Sup35, and the second is KLVFFAE, a fragment from amyloid-β protein, with a hydrophobic core delimited by two charged amino acids. The assembly of GNNQQNY suggests a mechanism of monomer addition, with a bias toward parallel peptide pairs and a gradual increase in the amount of β-strand content. For KLVFFAE, a mechanism involving dimers rather than monomers is revealed, involving a generally higher β-strand content and a transition toward a larger number of antiparallel peptide pairs during the rearrangement of the hexamer. The differences observed for the aggregation of the two peptides suggests the existence of a sequence-aggregation relationship.
Collapse
Affiliation(s)
- Bogdan Barz
- Forschungszentrum Jülich GmbH Institute of Complex Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
| | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK
| | - Birgit Strodel
- Forschungszentrum Jülich GmbH Institute of Complex Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Klippenstein SJ, Pande VS, Truhlar DG. Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. J Am Chem Soc 2014; 136:528-46. [DOI: 10.1021/ja408723a] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vijay S. Pande
- Department
of Chemistry and Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
45
|
Ceballos JA, Giraldo MA, Cossio P. Effects of a disulfide bridge prior to amyloid formation of the ABRI peptide. RSC Adv 2014. [DOI: 10.1039/c4ra06034b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational studies characterize remarkable differences between the most probable structures of the monomeric amyloidogenic peptide, ABRI, with and without a single disulfide bond; the peptide is compact and alpha-helical with the bond, otherwise it is partially extended with slight β-bridges and an exposed hydrophobic surface area.
Collapse
Affiliation(s)
| | | | - Pilar Cossio
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main, Germany
| |
Collapse
|
46
|
DeForte S, Reddy KD, Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (April-May-June, 2013). INTRINSICALLY DISORDERED PROTEINS 2013; 1:e27454. [PMID: 28516028 PMCID: PMC5424790 DOI: 10.4161/idp.27454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/18/2023]
Abstract
The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a series of reader's digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Krishna D Reddy
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| |
Collapse
|