1
|
Böhmer T, Pabst F, Gabriel JP, Zeißler R, Blochowicz T. On the spectral shape of the structural relaxation in supercooled liquids. J Chem Phys 2025; 162:120902. [PMID: 40135608 DOI: 10.1063/5.0254534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Structural relaxation in supercooled liquids is non-exponential. In susceptibility representation, χ″(ν), the spectral shape of the structural relaxation is observed as an asymmetrically broadened peak with a ν1 low- and ν-β high-frequency behavior. In this perspective article, we discuss common notions, recent results, and open questions regarding the spectral shape of the structural relaxation. In particular, we focus on the observation that a high-frequency behavior of ν-1/2 appears to be a generic feature in a broad range of supercooled liquids. Moreover, we review extensive evidence that contributions from orientational cross-correlations can lead to deviations from the generic spectral shape in certain substances, in particular in dielectric loss spectra. In addition, intramolecular dynamics can contribute significantly to the spectral shape in substances containing more complex and flexible molecules. Finally, we discuss the open questions regarding potential physical origins of the generic ν-1/2 behavior and the evolution of the spectral shape toward higher temperatures.
Collapse
Affiliation(s)
- Till Böhmer
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Florian Pabst
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Cologne, Germany
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Liang J, Feng X, Zheng N, Wang H, Ni R, Zhang Z. Glass Transition in Monolayers of Rough Colloidal Ellipsoids. PHYSICAL REVIEW LETTERS 2025; 134:038202. [PMID: 39927969 DOI: 10.1103/physrevlett.134.038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025]
Abstract
Structure-dynamics correlation is one of the major ongoing debates in the glass transition, although a number of structural features have been found connected to the dynamic heterogeneity in different glass-forming colloidal systems. Here, using colloidal experiments combined with coarse-grained molecular dynamics simulations, we investigate the glass transition in monolayers of rough colloidal ellipsoids. Compared with smooth colloidal ellipsoids, the surface roughness of ellipsoids is found to significantly change the nature of glass transition. In particular, we find that the surface roughness induced by coating only a few small hemispheres on the ellipsoids can eliminate the existence of orientational glass and the two-step glass transition found in monolayers of smooth ellipsoids. This is due to the surface roughness-induced coupling between the translational and rotational degrees of freedom in colloidal ellipsoids, which also destroys the structure-dynamics correlation found in glass-forming suspensions of colloidal ellipsoids. Our results not only suggest a new way of using surface roughness to manipulate the glass transition in colloidal systems, but also highlight the importance of detailed particle shape on the glass transition and structure-dynamics correlation in suspensions of anisotropic colloids.
Collapse
Affiliation(s)
- Jian Liang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Xuan Feng
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Ning Zheng
- Beijing Institute of Technology, School of Physics, Beijing 100081, China
| | - Huaguang Wang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
| | - Ran Ni
- Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 62 Nanyang Drive, 637459, Singapore
| | - Zexin Zhang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou 215123, China
- Soochow University, Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Suzhou 215006, China
| |
Collapse
|
3
|
Hoy RS. Generating Ultradense Jammed Ellipse Packings Using Biased SWAP. J Phys Chem B 2025; 129:763-770. [PMID: 39739335 DOI: 10.1021/acs.jpcb.4c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Using a Lubachevsky-Stillinger-like growth algorithm combined with biased SWAP Monte Carlo and transient degrees of freedom, we generate ultradense disordered jammed ellipse packings. For all aspect ratios α, these packings exhibit significantly smaller intermediate-wavelength density fluctuations and greater local nematic order than their less-dense counterparts. The densest packings are disordered despite having packing fractions ϕJ(α) that are within less than 0.5% of that of the monodisperse-ellipse crystal [ϕxtal = π/(2√3) ≃ 0.9069] over the range 1.2 ≲ α ≲ 1.45 and coordination numbers ZJ(α) that are within less than 0.5% of isostaticity [Ziso = 6] over the range 1.2 ≲ α ≲ 2.6. Lower-α packings are strongly fractionated and consist of polycrystals of intermediate-size particles, with the largest and smallest particles isolated at the grain boundaries. Higher-α packings are also fractionated, but in a qualitatively different fashion; they are composed─of increasingly large locally nematic domains─reminiscent of liquid glasses.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Latham ZD, Bermudez A, Hu JK, Lin NYC. Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions. BIOPHYSICS REVIEWS 2024; 5:041301. [PMID: 39416285 PMCID: PMC11479637 DOI: 10.1063/5.0220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Collapse
Affiliation(s)
- Zoe D. Latham
- Bioengineering Department, UCLA, Los Angeles, California 90095, USA
| | | | - Jimmy K. Hu
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
5
|
Arora P, Sadhukhan S, Nandi SK, Bi D, Sood AK, Ganapathy R. A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics. Nat Commun 2024; 15:5645. [PMID: 38969629 PMCID: PMC11226658 DOI: 10.1038/s41467-024-49044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics. Here, we design and assemble a monolayer of synthetic cell-mimics and examine their collective behaviour. By systematically increasing the persistence time of self-propulsion, we discovered a cell shape-driven, density-independent, re-entrant jamming transition. Notably, we observed cell shape and shape variability were mutually constrained in the confluent limit and followed the same universal scaling as that observed in confluent epithelia. Dynamical heterogeneities, however, did not conform to this scaling, with the fast cells showing suppressed shape variability, which our simulations revealed is due to a transient confinement effect of these cells by their slower neighbors. Our experiments unequivocally establish a morphodynamic link, demonstrating that geometric constraints alone can dictate epithelial jamming/unjamming.
Collapse
Affiliation(s)
- Pragya Arora
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| | - Souvik Sadhukhan
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
6
|
Lama H, Yamamoto MJ, Furuta Y, Shimaya T, Takeuchi KA. Emergence of bacterial glass. PNAS NEXUS 2024; 3:pgae238. [PMID: 38994498 PMCID: PMC11238424 DOI: 10.1093/pnasnexus/pgae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
Densely packed, motile bacteria can adopt collective states not seen in conventional, passive materials. These states remain in many ways mysterious, and their physical characterization can aid our understanding of natural bacterial colonies and biofilms as well as materials in general. Here, we overcome challenges associated with generating uniformly growing, large, quasi-two-dimensional bacterial assemblies by a membrane-based microfluidic device and report the emergence of glassy states in two-dimensional suspension of Escherichia coli. As the number density increases by cell growth, populations of motile bacteria transition to a glassy state, where cells are packed and unable to move. This takes place in two steps, the first one suppressing only the orientational modes and the second one vitrifying the motion completely. Characterizing each phase through statistical analyses and investigations of individual motion of bacteria, we find not only characteristic features of glass such as rapid slowdown, dynamic heterogeneity, and cage effects, but also a few properties distinguished from those of thermal glass. These distinctive properties include the spontaneous formation of micro-domains of aligned cells with collective motion, the appearance of an unusual signal in the dynamic susceptibility, and the dynamic slowdown with a density dependence generally forbidden for thermal systems. Our results are expected to capture general characteristics of such active rod glass, which may serve as a physical mechanism underlying dense bacterial aggregates.
Collapse
Affiliation(s)
- Hisay Lama
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro J Yamamoto
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8560, Japan
| | - Yujiro Furuta
- Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takuro Shimaya
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
7
|
Fink Z, Kim PY, Srivastava S, Ribbe AE, Hoagland DA, Russell TP. Evidence for Enhanced Tracer Diffusion in Densely Packed Interfacial Assemblies of Hairy Nanoparticles. NANO LETTERS 2023; 23:10383-10390. [PMID: 37955362 DOI: 10.1021/acs.nanolett.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nearly monodisperse nanoparticle (NP) spheres attached to a nonvolatile ionic liquid surface were tracked by in situ scanning electron microscopy to obtain the tracer diffusion coefficient Dtr as a function of the areal fraction ϕ. The in situ technique resolved both tracer (gold) and background (silica) particles for ∼1-2 min, highlighting their mechanisms of diffusion, which were strongly dependent on ϕ. Structure and dynamics at low and moderate ϕ paralleled those reported for larger colloidal spheres, showing an increase in order and a decrease in Dtr by over 4 orders of magnitude. However, ligand interactions were more important near jamming, leading to different caging and jamming dynamics for smaller NPs. The normalized Dtr at ultrahigh ϕ depended on particle diameter and ligand molecular weight. Increasing the PEG molecular weight by a factor of 4 increased Dtr by 2 orders of magnitude at ultrahigh ϕ, indicating stronger ligand lubrication for smaller particles.
Collapse
Affiliation(s)
- Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Satyam Srivastava
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E Ribbe
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - David A Hoagland
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Hill A, Tanaka M, Aptowicz KB, Mishra CK, Yodh AG, Ma X. Depletion-driven antiferromagnetic, paramagnetic, and ferromagnetic behavior in quasi-two-dimensional buckled colloidal solids. J Chem Phys 2023; 158:2890481. [PMID: 37184019 DOI: 10.1063/5.0146155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromagnet [Y. Han et al., Nature 456, 898-903 (2008)]. In this contribution, we show that the added depletion attraction can influence both the magnitude and sign of an Ising spin coupling constant. As a result, the nearest-neighbor Ising "spin" interactions can be made to vary from antiferromagnetic to para- and ferromagnetic. Using a simple theory, we compute an effective Ising nearest-neighbor coupling constant, and we show how competition between entropic effects permits for the modification of the coupling constant. We then experimentally demonstrate depletion-induced modification of the coupling constant, including its sign, and other behaviors. Depletion interactions are induced by rod-like surfactant micelles that change length with temperature and thus offer means for tuning the depletion attraction in situ. Buckled colloidal suspensions exhibit a crossover from an Ising antiferromagnetic to paramagnetic phase as a function of increasing depletion attraction. Additional dynamical experiments reveal structural arrest in various regimes of the coupling-constant, driven by different mechanisms. In total, this work introduces novel colloidal matter with "magnetic" features and complex dynamics rarely observed in traditional spin systems.
Collapse
Affiliation(s)
- Analisa Hill
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michio Tanaka
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kevin B Aptowicz
- Department of Physics and Engineering, West Chester University, West Chester, Pennsylvania 19383, USA
| | - Chandan K Mishra
- Discipline of Physics, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382055, India
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoguang Ma
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Ren S, Xu F, Wang H, Zhang Z. Colloidal antibiotic mimics: selective capture and killing of microorganisms by shape-anisotropic colloids. SOFT MATTER 2023; 19:3253-3256. [PMID: 37128986 DOI: 10.1039/d3sm00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of targeted and efficient antimicrobials for the selective killing of pathogenic bacteria is of great importance, yet remains challenging. Here, we propose a targeted approach to selectively capture and kill microorganisms with colloidal antibiotic mimics that are readily prepared by common chemical syntheses. The mimics are shape-anisotropic colloids, which can selectively capture shape-matching microorganisms due to lock-key depletion attractions. Furthermore, after being modified with gold nanoparticles (AuNPs) and irradiated with near-infrared light, the colloidal mimics can kill the selectively captured microorganisms due to the localized photothermal effect of the AuNPs. The work demonstrates the important ability of anisotropic colloids to selectively capture and precisely kill microorganisms, which holds considerable promise for safe and adaptive antibacterial therapies without the risk of antibiotic resistance.
Collapse
Affiliation(s)
- Sihua Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Fei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, and Institute for Advanced Study, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Abritta P, Hoy RS. Structure of saturated random-sequential-adsorption ellipse packings. Phys Rev E 2022; 106:054604. [PMID: 36559385 DOI: 10.1103/physreve.106.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Motivated by the recent observation of liquid glass in suspensions of ellipsoidal colloids, we examine the structure of (asymptotically) saturated RSA ellipse packings. We determine the packing fractions ϕ_{s}(α) to high precision, finding an empirical analytic formula that predicts ϕ_{s}(α) to within less than 0.1% for all α≤10. Then we explore how these packings' positional-orientational order varies with α. We find a transition from tip/side- to side/side-contact-dominated structure at α=α_{TS}≃2.4. At this aspect ratio, the peak value g_{max} of packings' positional-orientational pair correlation functions is minimal, and systems can be considered maximally locally disordered. For smaller (larger) α, g_{max} increases exponentially with deceasing (increasing) α. Local nematic order and structures comparable to the precursor domains observed in experiments gradually emerge as α increases beyond three. For α≳5, single-layer lamellae become more prominent and long-wavelength density fluctuations increase with α as packings gradually approach the rodlike limit.
Collapse
Affiliation(s)
- Pedro Abritta
- Department of Physics, University of South Florida, Tampa, Florida 33620 USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620 USA
| |
Collapse
|
11
|
Mondal M, Ganapathy R. Direct Measurements of Surface Strain-Mediated Lateral Interactions between Adsorbates in Colloidal Heteroepitaxy. PHYSICAL REVIEW LETTERS 2022; 129:088003. [PMID: 36053694 DOI: 10.1103/physrevlett.129.088003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Surface strain can alter the dynamics of adsorbates, and often, the adsorbates themselves induce and interact via their surface strain fields. In epitaxy, such strain-mediated effects get further compounded when a misfit strain exists due to lattice mismatch between the growing film and substrate. Here, we carry out particle-resolved imaging of heteroepitaxial growth of multilayer colloidal films where the particles interact via a short-range attraction. Surprisingly, although the misfit strain relaxed systematically with film thickness, the adcolloid diffusivity was nonmonotonic. We show that this nonmonotonicity stems from the competition between the spatial extent of self-induced in-layer strain and the short interaction range. Importantly, we provide direct evidence for long-ranged strain-mediated interactions between adsorbates and show that it alters the growing film's morphology.
Collapse
Affiliation(s)
- Manodeep Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
12
|
Arora P, Sood AK, Ganapathy R. Motile Topological Defects Hinder Dynamical Arrest in Dense Liquids of Active Ellipsoids. PHYSICAL REVIEW LETTERS 2022; 128:178002. [PMID: 35570456 DOI: 10.1103/physrevlett.128.178002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Recent numerical studies have identified the persistence time of active motion as a critical parameter governing glassy dynamics in dense active matter. Here we studied dynamics in liquids of granular active ellipsoids with tunable persistence and velocity. We show that increasing the persistence time at moderate supercooling is equivalent to increasing the strength of attraction in equilibrium liquids and results in reentrant dynamics not just in the translational degrees of freedom, as anticipated, but also in the orientational ones. However, at high densities, motile topological defects, unique to active liquids of elongated particles, hindered dynamical arrest. Most remarkably, for the highest activity, we observed intermittent dynamics due to the jamming-unjamming of these defects for the first time.
Collapse
Affiliation(s)
- Pragya Arora
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore- 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064, India
| |
Collapse
|
13
|
Takae K, Kawasaki T. Emergent elastic fields induced by topological phase transitions: Impact of molecular chirality and steric anisotropy. Proc Natl Acad Sci U S A 2022; 119:e2118492119. [PMID: 35344433 PMCID: PMC9168837 DOI: 10.1073/pnas.2118492119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/12/2022] [Indexed: 12/03/2022] Open
Abstract
SignificanceChirality, the property of an object that cannot be superimposed on its mirror image, plays an essential role in condensed matter, such as magnetic, electronic, and liquid crystal systems. Topological phases emerge in such chiral materials, wherein helical and vortex-like structures-called skyrmions-are observed. However, the role of elastic fields in these topological phases remains unexplored. Here, we construct a molecular model of two-dimensional crystals incorporating steric anisotropy and chiral interactions to elucidate this problem. The coupling between the elastic fields and phase transitions between uniform, helical, and half-skyrmion phases can be utilized to switch these topological phases by external forces. Our results provide a fundamental physical principle for designing topological materials using chiral molecular and colloidal crystals.
Collapse
Affiliation(s)
- Kyohei Takae
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Ettinger S, Dietrich CF, Mishra CK, Miksch C, Beller DA, Collings PJ, Yodh AG. Rods in a lyotropic chromonic liquid crystal: emergence of chirality, symmetry-breaking alignment, and caged angular diffusion. SOFT MATTER 2022; 18:487-495. [PMID: 34851348 DOI: 10.1039/d1sm01209f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In lyotropic chromonic liquid crystals (LCLCs), twist distortion of the nematic director costs much less energy than splay or bend distortion. This feature leads to novel mirror-symmetry breaking director configurations when the LCLCs are confined by interfaces or contain suspended particles. Spherical colloids in an aligned LCLC nematic phase, for example, induce chiral director perturbations ("twisted tails"). The asymmetry of rod-like particles in an aligned LCLC offer a richer set of possibilities due to their aspect ratio (α) and mean orientation angle (〈θ〉) between their long axis and the uniform far-field director. Here we report on the director configuration, equilibrium orientation, and angular diffusion of rod-like particles with planar anchoring suspended in an aligned LCLC. Video microscopy reveals, counterintuitively, that two-thirds of the rods have an angled equilibrium orientation (〈θ〉 ≠ 0) that decreases with increasing α, while only one-third of the rods are aligned (〈θ〉 = 0). Polarized optical video-microscopy and Landau-de Gennes numerical modeling demonstrate that the angled and aligned rods are accompanied by distinct chiral director configurations. Angled rods have a longitudinal mirror plane (LMP) parallel to their long axis and approximately parallel to the substrate walls. Aligned rods have a transverse and longitudinal mirror plane (TLMP), where the transverse mirror plane is perpendicular to the rod's long axis. Effectively, the small twist elastic constant of LCLCs promotes chiral director configurations that modify the natural tendency of rods to orient along the far-field director. Additional diffusion experiments confirm that rods are angularly confined with strength that depends on α.
Collapse
Affiliation(s)
- Sophie Ettinger
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Clarissa F Dietrich
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Chandan K Mishra
- Discipline of Physics, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Cornelia Miksch
- Max Planck Institute of Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Daniel A Beller
- Department of Physics, University of California, Merced, CA, 95343, USA
| | - Peter J Collings
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, 19081, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Ma X, Mishra CK, Habdas P, Yodh AG. Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition. J Chem Phys 2021; 155:074902. [PMID: 34418931 DOI: 10.1063/5.0059084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigate the short-time vibrational properties and structure of two-dimensional, bidisperse, colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition, as a function of interparticle depletion attraction strength. The long-time spatiotemporal dynamics of the samples are measured to be non-monotonic, confirming that the suspensions evolve from repulsive glass to supercooled liquid to attractive glass with increasing depletion attraction. Here, we search for vibrational signatures of the re-entrant behavior in the short-time spatiotemporal dynamics, i.e., dynamics associated with particle motion inside its nearest-neighbor cage. Interestingly, we observe that the anharmonicity of these in-cage vibrations varies non-monotonically with increasing attraction strength, consistent with the non-monotonic long-time structural relaxation dynamics of the re-entrant glass. We also extract effective spring constants between neighboring particles; we find that spring stiffness involving small particles also varies non-monotonically with increasing attraction strength, while stiffness between large particles increases monotonically. Last, from study of depletion-dependent local structure and vibration participation fractions, we gain microscopic insight into the particle-size-dependent contributions to short-time vibrational modes in the glass and supercooled liquid states.
Collapse
Affiliation(s)
- Xiaoguang Ma
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chandan K Mishra
- Discipline of Physics, Indian Institute of Technology (IIT) Gandhinagar Palaj, Gandhinagar, Gujarat 382355, India
| | - P Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Lu J, Bu X, Zhang X, Liu B. Self-assembly of shape-tunable oblate colloidal particles into orientationally ordered crystals, glassy crystals and plastic crystals. SOFT MATTER 2021; 17:6486-6494. [PMID: 34137767 DOI: 10.1039/d1sm00343g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The shapes of colloidal particles are crucial to self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question. Here, we demonstrate that, by using particles whose shape interpolates between a flat disc and a sphere, not only are self-assembled superstructures but also their orientations sensitively dependent on the particle shape. By changing the shape gradually from a flat disc to a spherical shape, a crystal sequence from orientationally ordered crystals to orientationally disordered crystals with frozen and more free rotations are found. The latter two phases are identified as a glassy crystal and a plastic crystal, respectively. By combining theoretical model calculations, the formed crystal structures and the occurring transitions are found to be dictated by the interplay between particle shape and particle-particle interaction as well as particle-wall interaction. In particular, for quasi-spherical shapes, when the strong attraction dominates, a glassy crystal forms, or otherwise a plastic crystal forms. These results demonstrate that the interplay between the particle shape and the interaction can be used to tune crystallization and further fabricate colloid-based new structured and dynamic materials.
Collapse
Affiliation(s)
- Jiawei Lu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Xiangyu Bu
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Xinhua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
17
|
Roller J, Laganapan A, Meijer JM, Fuchs M, Zumbusch A. Observation of liquid glass in suspensions of ellipsoidal colloids. Proc Natl Acad Sci U S A 2021; 118:e2018072118. [PMID: 33397813 PMCID: PMC7826331 DOI: 10.1073/pnas.2018072118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite the omnipresence of colloidal suspensions, little is known about the influence of colloid shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results at high concentrations have been limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are nonspherical, and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy of fluorescently labeled core-shell particles, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives evidence of the importance of shape on the glass transition in general.
Collapse
Affiliation(s)
- Jörg Roller
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Aleena Laganapan
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
| | - Janne-Mieke Meijer
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthias Fuchs
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany;
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| |
Collapse
|
18
|
Zheng Z, Ni R, Wang Y, Han Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. SCIENCE ADVANCES 2021; 7:7/3/eabd1958. [PMID: 33523902 PMCID: PMC7810379 DOI: 10.1126/sciadv.abd1958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Critical-like behaviors have been found in translational degrees of freedom near the glass transition of spherical particle systems mainly with local polycrystalline structures, but it is not clear if criticality exists in more general glassy systems composed of nonspherical particles without crystalline structures. Here, through experiments and simulations, we show critical-like behaviors in both translational and rotational degrees of freedom in monolayers of monodisperse colloidal ellipsoids in the absence of crystalline orders. We find rich features of the Ising-like criticality in structure and slow dynamics at the ideal glass transition point ϕ0, showing the thermodynamic nature of glass transition at ϕ0 A dynamic criticality is found at the mode-coupling critical point ϕc for the fast-moving clusters whose critical exponents increase linearly with fragility, reflecting a dynamic glass transition. These results cast light on the glass transition and explain the mystery that the dynamic correlation lengths diverge at two different temperatures.
Collapse
Affiliation(s)
- Zhongyu Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yuren Wang
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
19
|
Al Harraq A, Bharti B. Increasing aspect ratio of particles suppresses buckling in shells formed by drying suspensions. SOFT MATTER 2020; 16:9643-9647. [PMID: 32954396 DOI: 10.1039/d0sm01467b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solvent evaporation in unpinned droplets of colloidal suspensions leads to the formation of porous shells which buckle under the pressure differential imposed by drying. We investigate the role of aspect ratio of rod-shaped particles in suppressing such buckling instabilities. Longer, thinner rods pack into permeable shells with consequently lower Darcy's pressure and thus avoid buckling.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
20
|
Zhou F, Wang H, Zhang Z. Diffusion of Anisotropic Colloids in Periodic Arrays of Obstacles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11866-11872. [PMID: 32927949 DOI: 10.1021/acs.langmuir.0c01884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal suspensions in confined geometries exhibit rich diffusion dynamics governed by particle shapes and particle-confinement interactions. Here, we propose a colloidal system, consisting of ellipsoids in periodic array of obstacles, to investigate the confined diffusion of anisotropic colloids. From the obstacle density-dependent diffusion, we discover a decoupling of translational and rotational diffusion in which only rotational motion is localized while translational motion remains diffusive. Moreover, by evaluating the probability distributions of displacements, we found Brownian but non-Gaussian diffusion behaviors with increasing the obstacle densities, which originates from the shape anisotropy of the colloid and the multiplicity of the local configurations of the ellipsoids with respect to the obstacle. Our results suggest that the shape anisotropy and spatial confinements play a vital role in the diffusion dynamics. It is important for understanding the transportations of anisotropic objects in complex environments.
Collapse
Affiliation(s)
- Fang Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| |
Collapse
|
21
|
Zheng W, Lei QL, Ma Y, Ni R. Hierarchical glass transition of hard hemidisks with local assemblies. SOFT MATTER 2020; 16:8108-8113. [PMID: 32896848 DOI: 10.1039/d0sm01003k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using computer simulation, we investigate the glass transition of a two-dimensional hard-hemidisk system. Upon increasing the packing fraction of the system, we find that the system vitrifies into a glass with local assembled discal "dimers", which are free to rotate in a collective way. The rotational mean square displacement does not exhibit the typical plateau (slowdown) like what occurs in the translational mean square displacement. This effect induces a pronounced violation of the rotational Stokes-Einstein relationship compared with the translational degree of freedom at the supercooled region. However, the obtained glass transition points in these two freedom degrees are found to be the same within the numerical accuracy, which is due to the strong positive spatial and dynamic correlation between translational and rotational slow-moving particles. Moreover, we find that the locally assembled dimers can serve as fast rotating gears facilitating the orientational relaxation in the system, and this suggests that the locally favored finite structures play an important role in the hierarchical glass transition of anisotropic colloids.
Collapse
Affiliation(s)
- Wei Zheng
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China. and School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | - Qun-Li Lei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
22
|
Mizani S, Gurin P, Aliabadi R, Salehi H, Varga S. Demixing and tetratic ordering in some binary mixtures of hard superellipses. J Chem Phys 2020; 153:034501. [PMID: 32716200 DOI: 10.1063/5.0009705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examine the fluid phase behavior of binary mixtures of hard superellipses using the scaled particle theory. The superellipse is a general two-dimensional convex object that can be tuned between the elliptical and rectangular shapes continuously at a given aspect ratio. We find that the shape of the particle affects strongly the stability of isotropic, nematic, and tetratic phases in the mixture even if the side lengths of both species are fixed. While the isotropic-isotropic demixing transition can be ruled out using the scaled particle theory, the first order isotropic-nematic and the nematic-nematic demixing transition can be stabilized with strong fractionation between the components. It is observed that the demixing tendency is strongest in small rectangle-large ellipse mixtures. Interestingly, it is possible to stabilize the tetratic order at lower densities in the mixture of hard squares and rectangles where the long rectangles form a nematic phase, while the squares stay in the tetratic order.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
23
|
Sharma V, Paul D, Chaubey SK, Tiwari S, Kumar GVP. Large-scale optothermal assembly of colloids mediated by a gold microplate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:324002. [PMID: 32235046 DOI: 10.1088/1361-648x/ab8552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Light-activated colloidal assembly and swarming can act as model systems to explore non-equilibrium state of matter. In this context, creating new experimental platforms to facilitate and control two-dimensional assembly of colloidal crystals are of contemporary interest. In this paper, we present an experimental study of assembly of colloidal silica microparticles in the vicinity of a single-crystalline gold microplate evanescently excited by a 532 nm laser beam. The gold microplate acts as a source of heat and establishes a thermal gradient in the system. The created optothermal potential assembles colloids to form a two-dimensional poly-crystal, and we quantify the coordination number and hexagonal packing order of the assembly in such a driven system. Our experimental investigation shows that for a given particle size, the variation in assembly can be tuned as a function of excitation-polarization and surface to volume ratio of the gold microplates. Furthermore, we observe that the assembly is dependent on size of the particle and its material composition. Specifically, silica colloids assemble but polystyrene colloids do not, indicating an intricate behaviour of the forces under play. Our work highlights a promising direction in utilizing metallic microstructures that can be harnessed for optothermal colloidal crystal assembly and swarming studies. Our experimental system can be utilized to explore optically driven matter and photophoretic interactions in soft-matter including biological systems such as cells and micro organisms.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Diptabrata Paul
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Shailendra K Chaubey
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune-411008, India
- Center for Energy Science, Indian Institute of Science Education and Research, Pune-411008, India
| |
Collapse
|
24
|
Pal A, Martinez VA, Ito TH, Arlt J, Crassous JJ, Poon WCK, Schurtenberger P. Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy. SCIENCE ADVANCES 2020; 6:eaaw9733. [PMID: 32010765 PMCID: PMC6968932 DOI: 10.1126/sciadv.aaw9733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Anisotropic dynamics on the colloidal length scale is ubiquitous in nature. Of particular interest is the dynamics of systems approaching a kinetically arrested state. The failure of classical techniques for investigating the dynamics of highly turbid suspensions has contributed toward the limited experimental information available up until now. Exploiting the recent developments in the technique of differential dynamic microscopy (DDM), we report the first experimental study of the anisotropic collective dynamics of colloidal ellipsoids with a magnetic hematite core over a wide concentration range approaching kinetic arrest. In addition, we have investigated the effect of an external magnetic field on the resulting anisotropic collective diffusion. We combine DDM with small-angle x-ray scattering and rheological measurements to locate the glass transition and to relate the collective short- and long-time diffusion coefficients to the structural correlations and the evolution of the zero shear viscosity as the system approaches an arrested state.
Collapse
Affiliation(s)
- Antara Pal
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Vincent A. Martinez
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Thiago H. Ito
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Jochen Arlt
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jérôme J. Crassous
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Wilson C. K. Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
- Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| |
Collapse
|
25
|
Li YW, Mishra CK, Sun ZY, Zhao K, Mason TG, Ganapathy R, Pica Ciamarra M. Long-wavelength fluctuations and anomalous dynamics in 2-dimensional liquids. Proc Natl Acad Sci U S A 2019; 116:22977-22982. [PMID: 31659051 PMCID: PMC6859305 DOI: 10.1073/pnas.1909319116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
Collapse
Affiliation(s)
- Yan-Wei Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chandan K Mishra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Kun Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
- Institute for Superconductors, Oxides and Other Innovative Materials and Devices, Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
26
|
Cui D, MacLeod JM, Rosei F. Planar Anchoring of C 70 Liquid Crystals Using a Covalent Organic Framework Template. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903294. [PMID: 31513362 DOI: 10.1002/smll.201903294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The surface-induced anchoring effect is a well-developed technique to control the growth of liquid crystals (LCs). Nevertheless, a defined nanometer-scale template has never been used to induce the anchored growth of LCs with molecular building units. Scanning tunneling microscopy results at the solid/liquid interface reveal that a 2D covalent organic framework (COF-1) can offer an anchoring effect to template C70 molecules into forming several LC mesophases, which cannot be obtained under other conditions. Through comparison with the C60 system, a stepwise breakdown in ordering of C70 LC is observed. The process is described in terms of the effects of molecular anisotropy on the epitaxial growth of molecular crystals. The results suggest that using a surface-confined template to anchor the initial layer of LC molecules can be a modular and potentially broadly applicable approach for organizing molecular mesogens into LCs.
Collapse
Affiliation(s)
- Daling Cui
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
| | - Jennifer M MacLeod
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
| |
Collapse
|
27
|
Mishra CK, Ma X, Habdas P, Aptowicz KB, Yodh AG. Correlations between short- and long-time relaxation in colloidal supercooled liquids and glasses. Phys Rev E 2019; 100:020603. [PMID: 31574722 DOI: 10.1103/physreve.100.020603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 11/07/2022]
Abstract
Spatiotemporal dynamics of short- and long-time structural relaxation are measured experimentally as a function of packing fraction, ϕ, in quasi-two-dimensional colloidal supercooled liquids and glasses. The relaxation times associated with long-time dynamic heterogeneity and short-time intracage motion are found to be strongly correlated and to grow by orders of magnitude with increasing ϕ toward dynamic arrest. We find that clusters of fast particles on the two timescales often overlap, and, interestingly, the distribution of minimum-spatial-separation between closest nonoverlapping clusters across the two timescales is revealed to be exponential with a decay length that increases with ϕ. In total, the experimental observations suggest short-time relaxation events are very often precursors to heterogeneous relaxation at longer timescales in glassy materials.
Collapse
Affiliation(s)
- Chandan K Mishra
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoguang Ma
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Complex Assemblies of Soft Matter, CNRS-Solvay-UPenn UMI 3254, Bristol, Pennsylvania 19007-3624, USA
| | - Piotr Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - Kevin B Aptowicz
- Department of Physics and Engineering, West Chester University, West Chester, Pennsylvania 19383, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Mishra CK, Habdas P, Yodh AG. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory. J Phys Chem B 2019; 123:5181-5188. [PMID: 31132279 DOI: 10.1021/acs.jpcb.9b03419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics in supercooled liquids slow enormously upon approaching the glass transition, albeit without significant change of liquid structure. This empirical observation has stimulated development of many theoretical models which attempt to elucidate microscopic mechanisms in glasses and glass precursors. Here, quasi-two-dimensional colloidal supercooled liquids and glasses are employed to experimentally test predictions of widely used models: mode coupling theory (MCT) and its important extension, inhomogeneous MCT (IMCT). We measure two-point dynamic correlation functions in the glass forming liquids to determine structural relaxation times, τα, and mode coupling exponents, a, b, and γ; these parameters are then used to extract the mode coupling dynamic crossover packing area-fraction, ϕ c. This information, along with our measurements of supercooled liquid spatiotemporal dynamics, permits characterization of dynamic heterogeneities in the samples and facilitates direct experimental tests of the scaling predictions of IMCT. The time scales at which dynamic heterogeneities are largest, and their spatial sizes, exhibit power law growth on approaching ϕ c. Within experimental error, the exponents of the measured power laws are close to the predictions of IMCT.
Collapse
Affiliation(s)
- Chandan K Mishra
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Piotr Habdas
- Department of Physics , Saint Joseph's University , Philadelphia , Pennsylvania 19131 , United States
| | - A G Yodh
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
29
|
Dai LJ, Fu CL, Zhu YL, Sun ZY. Heterogeneous dynamics of unentangled chains in polymer nanocomposites. J Chem Phys 2019; 150:184903. [PMID: 31091923 DOI: 10.1063/1.5089816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present a systematic investigation on the effect of adding nanoparticles on the dynamics of polymer chains by using coarse-grained molecular dynamics simulation. The dynamics is characterized by three aspects: molecular motion, relaxation at different length scales, and dynamical heterogeneity. It is found that the motion of polymer chains slows down and the deviation from Gaussian distribution becomes more pronounced with increasing nanoparticle volume fractions. For polymer nanocomposites with R ≤ Rg, the relaxation at the wave vector q = 7.0 displays multistep decay, consistent with the previous reports in strongly interacting polymer nanocomposites. Moreover, a qualitatively universal law is established that dynamic heterogeneity at whole chain's scale follows a nonmonotonic increase with increasing nanoparticle loadings, where the volume fraction of the maximum dynamic heterogeneity corresponds to the particle loading when the average distance between nanoparticles is equal to the Kuhn length of polymer chains. We show that the decoupling between whole chain's dynamics and segment dynamics is responsible for the nonmonotonic behavior of dynamic heterogeneity of whole chains.
Collapse
Affiliation(s)
- Li-Jun Dai
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Cui-Liu Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
30
|
Zou QZ, Li ZW, Zhu YL, Sun ZY. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles. SOFT MATTER 2019; 15:3343-3352. [PMID: 30951070 DOI: 10.1039/c9sm00165d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We perform dynamics simulations to investigate the translational and rotational glassy dynamics in a glass-forming liquid of monodisperse soft Janus particles. We find that, with decreasing temperature, the mean-square angular displacement shows no clear plateau in the caging region, in contrast with the apparent caging behavior of translational motion. By defining a reorientational mean-square angular displacement, the caging behavior of rotational motion can be recognized. On approaching the glass transition (decreasing temperature), the coupling between translational and rotational relaxation increases, while the coupling between translational and rotational diffusion decreases, whereas the coupling between translational and reorientational diffusion increases. The strong decoupling between translational and rotational diffusion is due to the suppressed translational mobility but promoted rotational mobility of soft Janus particles. We think that the low-T SE and SED decoupling is mainly attributed to hopping motion of soft Janus particles, whereas the high-T SE and SED decoupling is mainly attributed to collective cage motion of soft Janus particles. Our results demonstrate that interaction anisotropy has a critical effect on the translational and rotational dynamics of soft Janus particles.
Collapse
Affiliation(s)
- Qing-Zhi Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
31
|
Ma X, Liu J, Zhang Y, Habdas P, Yodh AG. Excess entropy and long-time diffusion in colloidal fluids with short-range interparticle attraction. J Chem Phys 2019; 150:144907. [PMID: 30981231 DOI: 10.1063/1.5091564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Liquid structure and dynamics are experimentally investigated in colloidal suspensions with short-range depletion attraction. The colloidal fluid samples consist of hard-sphere colloidal particles suspended along with rodlike depletants based on surfactant micelles. The spheres have a range of surface chemistries, diameters, and packing fractions, and the rodlike micelle length depends on the temperature. Thus, the combination of hard-spheres and depletants generates a sample wherein short-range interparticle attraction can be temperature-tuned in situ. Video optical microscopy and particle tracking techniques are employed to measure particle trajectories from which structural and dynamical quantities are derived, including the particle pair correlation function [g(r)], mean square displacement, long-time diffusion coefficient, and the sample two-body excess entropy (S2). The samples with stronger short-range attractions exhibit more order, as characterized by g(r) and S2. The stronger short-range attractions are also observed to lead to slower long-time diffusion and more heterogeneous dynamics at intermediate time scales. Finally, the excess entropy scaling law prediction, i.e., the exponential relationship between two-body excess entropy and long-time diffusivity, is observed across the full range of samples.
Collapse
Affiliation(s)
- Xiaoguang Ma
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jiachen Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yikang Zhang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Piotr Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
32
|
Royall CP, Williams SR, Tanaka H. Vitrification and gelation in sticky spheres. J Chem Phys 2018; 148:044501. [PMID: 29390812 DOI: 10.1063/1.5000263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and "sticky" spheres. It has been suggested that "spinodal" gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499-504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the "discontinuous" nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic, dynamic, and structural basis upon which we can distinguish gelation from vitrification.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Stephen R Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
33
|
Banerjee A, Nandi MK, Sastry S, Maitra Bhattacharyya S. Determination of onset temperature from the entropy for fragile to strong liquids. J Chem Phys 2018; 147:024504. [PMID: 28711039 DOI: 10.1063/1.4991848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this paper, we establish a connection between the onset temperature of glassy dynamics with the change in the entropy for a wide range of model systems. We identify the crossing temperature of pair and excess entropies as the onset temperature. Below the onset temperature, the residual multiparticle entropy, the difference between excess and pair entropies, becomes positive. The positive entropy can be viewed as equivalent to the larger phase space exploration of the system. The new method of onset temperature prediction from entropy is less ambiguous, as it does not depend on any fitting parameter like the existing methods.
Collapse
Affiliation(s)
- Atreyee Banerjee
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Manoj Kumar Nandi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | | |
Collapse
|
34
|
Wang L, Mei B, Song J, Lu Y, An L. Structural relaxation and glass transition behavior of binary hard-ellipse mixtures. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sun DW, Müller M. Fabrication of Ellipsoidal Mesostructures in Block Copolymers via a Step-Shear Deformation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- De-Wen Sun
- Institut für Theoretische
Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz
1, D 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische
Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz
1, D 37077 Göttingen, Germany
| |
Collapse
|
36
|
Abstract
Colloids are suspensions of small solid particles in a liquid and exhibit glassy behavior when the particle concentration is high. In these samples, the particles are roughly analogous to individual molecules in a traditional glass. This model system has been used to study the glass transition since the 1980s. In this Viewpoint I summarize some of the intriguing behaviors of the glass transition in colloids and discuss open questions.
Collapse
Affiliation(s)
- Eric R. Weeks
- Department of Physics, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
37
|
Gratale MD, Ma X, Davidson ZS, Still T, Habdas P, Yodh AG. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction. Phys Rev E 2016; 94:042606. [PMID: 27841543 DOI: 10.1103/physreve.94.042606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 06/06/2023]
Abstract
We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.
Collapse
Affiliation(s)
- Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoguang Ma
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Complex Assemblies of Soft Matter, CNRS-Solvay-UPenn UMI 3254, Bristol, Pennsylvania 19007-3624, USA
| | - Zoey S Davidson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Piotr Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Hwang J, Kim J, Sung BJ. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys Rev E 2016; 94:022614. [PMID: 27627367 DOI: 10.1103/physreve.94.022614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/07/2022]
Abstract
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Collapse
Affiliation(s)
- Jiye Hwang
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Jeongmin Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
39
|
Gratale MD, Still T, Matyas C, Davidson ZS, Lobel S, Collings PJ, Yodh AG. Tunable depletion potentials driven by shape variation of surfactant micelles. Phys Rev E 2016; 93:050601. [PMID: 27300818 DOI: 10.1103/physreve.93.050601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 06/06/2023]
Abstract
Depletion interaction potentials between micron-sized colloidal particles are induced by nanometer-scale surfactant micelles composed of hexaethylene glycol monododecyl ether (C_{12}E_{6}), and they are measured by video microscopy. The strength and range of the depletion interaction is revealed to arise from variations in shape anisotropy of the surfactant micelles. This shape anisotropy increases with increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract micelle length and shape anisotropy as a function of temperature. This work introduces shape anisotropy tuning as a means to control interparticle interactions in colloidal suspensions, and it shows how the interparticle depletion potentials of micron-scale objects can be employed to probe the shape and size of surrounding macromolecules at the nanoscale.
Collapse
Affiliation(s)
- Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caitlin Matyas
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Arts Academy at Benjamin Rush, Philadelphia, Pennsylvania 19154, USA
| | - Zoey S Davidson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samuel Lobel
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter J Collings
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
Varga S, Martínez-Ratón Y, Velasco E, Bautista-Carbajal G, Odriozola G. Effect of orientational restriction on monolayers of hard ellipsoids. Phys Chem Chem Phys 2016; 18:4547-56. [PMID: 26796794 DOI: 10.1039/c5cp05702g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of out-of-plane orientational freedom on the orientational ordering properties of a monolayer of hard ellipsoids is studied using the Parsons-Lee scaling approach and replica exchange Monte Carlo computer simulation. Prolate and oblate ellipsoids exhibit very different ordering properties, namely, the axes of revolution of prolate particles tend to lean out, while those of oblate ones prefer to lean into the confining plane. The driving mechanism of this is that the particles try to maximize the available free area on the confining surface, which can be achieved by minimizing the cross section areas of the particles with the plane. In the lack of out-of-plane orientational freedom the monolayer of prolate particles is identical to a two-dimensional hard ellipse system, which undergoes an isotropic-nematic ordering transition with increasing density. With gradually switching on the out-of-plane orientational freedom the prolate particles lean out from the confining plane and destabilisation of the in-plane isotropic-nematic phase transition is observed. The system of oblate particles behaves oppositely to that of prolates. It corresponds to a two-dimensional system of hard disks in the lack of out-of-plane freedom, while it behaves similar to that of hard ellipses in the freely rotating case. Solid phases can be realised by lower surface coverage due to the out-of-plane orientation freedom for both oblate and prolate shapes.
Collapse
Affiliation(s)
- Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, PO Box 158, Veszprém, H-8201 Hungary
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Gustavo Bautista-Carbajal
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México, Distrito Federal, Mexico and Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, 07160, México, D. F., Mexico
| | - Gerardo Odriozola
- Area de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 México, D. F., Mexico.
| |
Collapse
|
41
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
42
|
Besseling TH, Hermes M, Kuijk A, de Nijs B, Deng TS, Dijkstra M, Imhof A, van Blaaderen A. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194109. [PMID: 25922931 DOI: 10.1088/0953-8984/27/19/194109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.
Collapse
|
43
|
Mishra CK, Ganapathy R. Shape of dynamical heterogeneities and fractional Stokes-Einstein and Stokes-Einstein-Debye relations in quasi-two-dimensional suspensions of colloidal ellipsoids. PHYSICAL REVIEW LETTERS 2015; 114:198302. [PMID: 26024202 DOI: 10.1103/physrevlett.114.198302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Indexed: 06/04/2023]
Abstract
We examine the influence of the shape of dynamical heterogeneities on the Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in quasi-two-dimensional suspensions of colloidal ellipsoids. For ellipsoids with repulsive interactions, both SE and SED relations are violated at all area fractions. On approaching the glass transition, however, the extent to which this violation occurs changes beyond a crossover area fraction. Quite remarkably, we find that it is not just the presence of dynamical heterogeneities but their change in the shape from stringlike to compact that coincides with this crossover. On introducing a suitable short-range depletion attraction between the ellipsoids, associated with the lack of morphological evolution of dynamical heterogeneities, the extent to which the SE and SED relations are violated remains unchanged even for deep supercooling.
Collapse
Affiliation(s)
- Chandan K Mishra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
44
|
Xu WS, Sun ZY, An LJ. Relaxation dynamics in a binary hard-ellipse liquid. SOFT MATTER 2015; 11:627-634. [PMID: 25466776 DOI: 10.1039/c4sm02290d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.
Collapse
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
45
|
Pilkiewicz KR, Eaves JD. Reentrance in an active glass mixture. SOFT MATTER 2014; 10:7495-7501. [PMID: 25208297 DOI: 10.1039/c4sm01177e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Active matter, whose motion is driven, and glasses, whose dynamics are arrested, seem to lie at opposite ends of the spectrum in nonequilibrium systems. In spite of this, both classes of systems exhibit a multitude of stable states that are dynamically isolated from one another. While this defining characteristic is held in common, its origin is different in each case: for active systems, the irreversible driving forces can produce dynamically frozen states, while glassy systems vitrify when they get kinetically trapped on a rugged free energy landscape. In a mixture of active and glassy particles, the interplay between these two tendencies leads to novel phenomenology. We demonstrate this with a spin glass model that we generalize to include an active component. In the absence of a ferromagnetic bias, we find that the spin glass transition temperature depresses with the active fraction, consistent with what has been observed for fully active glassy systems. When a bias does exist, however, a new type of transition becomes possible: the system can be cooled out of the glassy phase. This unusual phenomenon, known as reentrance, has been observed before in a limited number of colloidal and micellar systems, but it has not yet been observed in active glass mixtures. Using low order perturbation theory, we study the origin of this reentrance and, based on the physical picture that results, suggest how our predictions might be measured experimentally.
Collapse
Affiliation(s)
- Kevin R Pilkiewicz
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.
| | | |
Collapse
|
46
|
Dynamical facilitation governs glassy dynamics in suspensions of colloidal ellipsoids. Proc Natl Acad Sci U S A 2014; 111:15362-7. [PMID: 25313030 DOI: 10.1073/pnas.1413384111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particular, recent experiments and simulations have highlighted the importance of facilitation using simple model systems composed of spherical particles. However, an overwhelming majority of liquids possess anisotropy in particle shape and interactions, and it is therefore imperative to examine facilitation in complex glass formers. Here, we apply the DF theory to systems with orientational degrees of freedom as well as anisotropic attractive interactions. By analyzing data from experiments on colloidal ellipsoids, we show that facilitation plays a pivotal role in translational as well as orientational relaxation. Furthermore, we demonstrate that the introduction of attractive interactions leads to spatial decoupling of translational and rotational facilitation, which subsequently results in the decoupling of dynamical heterogeneities. Most strikingly, the DF theory can predict the existence of reentrant glass transitions based on the statistics of localized dynamical events, called excitations, whose duration is substantially smaller than the structural relaxation time. Our findings pave the way for systematically testing the DF approach in complex glass formers and also establish the significance of facilitation in governing structural relaxation in supercooled liquids.
Collapse
|
47
|
Williams M, Tummala NR, Aziz SG, Risko C, Brédas JL. Influence of Molecular Shape on Solid-State Packing in Disordered PC61BM and PC71BM Fullerenes. J Phys Chem Lett 2014; 5:3427-3433. [PMID: 26278457 DOI: 10.1021/jz501559q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular and polymer packings in pure and mixed domains and at interfacial regions play an important role in the photoconversion processes occurring within bulk heterojunction organic solar cells (OSCs). Here, molecular dynamics simulations are used to investigate molecular packing in disordered (amorphous) phenyl-C70-butyric acid-methyl ester (PC71BM) and its C60 analogue (PC61BM), the two most widely used molecular-based electron-accepting materials in OSCs. The more ellipsoidal character of PC71BM leads to different molecular packings and phase transitions when compared to the more spherical PC61BM. Though electronic structure calculations indicate that the average intermolecular electronic couplings are comparable for the two systems, the electronic couplings as a function of orientation reveal important variations. Overall, this work highlights a series of intrinsic differences between PC71BM and PC61BM that should be considered for a detailed interpretation and modeling of the photoconversion process in OSCs where these materials are used.
Collapse
Affiliation(s)
| | | | - Saadullah G Aziz
- ‡Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | | | - Jean-Luc Brédas
- ‡Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Martínez-Ratón Y, Varga S, Velasco E. Phase behaviour of liquid-crystal monolayers of rod-like and plate-like particles. J Chem Phys 2014; 140:204906. [DOI: 10.1063/1.4876719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat Commun 2014; 5:3829. [PMID: 24807069 PMCID: PMC4024749 DOI: 10.1038/ncomms4829] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
When a liquid is supercooled towards the glass transition, its dynamics drastically slows down, whereas its static structure remains relatively unchanged. Finding a structural signature of the dynamic slowing down is a major challenge, yet it is often too subtle to be uncovered. Here we discover the structural signatures for both translational and rotational dynamics in monolayers of colloidal ellipsoids by video microscopy experiments and computer simulations. The correlation lengths of the dynamic slowest-moving clusters, the static glassy clusters, the static local structural entropy and the dynamic heterogeneity follow the same power-law divergence, suggesting that the kinetic slowing down is caused by a decrease in the structural entropy and an increase in the size of the glassy cluster. Ellipsoids with different aspect ratios exhibit single- or double-step glass transitions with distinct dynamic heterogeneities. These findings demonstrate that the particle shape anisotropy has important effects on the structure and dynamics of the glass. To establish a structural signature of slow dynamics as a system approaches the glass transition is challenging. Here, the authors identify, by performing video microscopy experiments and simulations, two structural signatures for the rotational and translational dynamics in monolayers of colloidal ellipsoids.
Collapse
|
50
|
Varga S, Meneses-Júarez E, Odriozola G. Empty liquid phase of colloidal ellipsoids: The role of shape and interaction anisotropy. J Chem Phys 2014; 140:134905. [DOI: 10.1063/1.4869938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|