1
|
Stawarz JE, Muñoz PA, Bessho N, Bandyopadhyay R, Nakamura TKM, Eriksson S, Graham DB, Büchner J, Chasapis A, Drake JF, Shay MA, Ergun RE, Hasegawa H, Khotyaintsev YV, Swisdak M, Wilder FD. The Interplay Between Collisionless Magnetic Reconnection and Turbulence. SPACE SCIENCE REVIEWS 2024; 220:90. [PMID: 39605945 PMCID: PMC11589065 DOI: 10.1007/s11214-024-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Alongside magnetic reconnection, turbulence is another fundamental nonlinear plasma phenomenon that plays a key role in energy transport and conversion in space and astrophysical plasmas. From a numerical, theoretical, and observational point of view there is a long history of exploring the interplay between these two phenomena in space plasma environments; however, recent high-resolution, multi-spacecraft observations have ushered in a new era of understanding this complex topic. The interplay between reconnection and turbulence is both complex and multifaceted, and can be viewed through a number of different interrelated lenses - including turbulence acting to generate current sheets that undergo magnetic reconnection (turbulence-driven reconnection), magnetic reconnection driving turbulent dynamics in an environment (reconnection-driven turbulence) or acting as an intermediate step in the excitation of turbulence, and the random diffusive/dispersive nature of the magnetic field lines embedded in turbulent fluctuations enabling so-called stochastic reconnection. In this paper, we review the current state of knowledge on these different facets of the interplay between turbulence and reconnection in the context of collisionless plasmas, such as those found in many near-Earth astrophysical environments, from a theoretical, numerical, and observational perspective. Particular focus is given to several key regions in Earth's magnetosphere - namely, Earth's magnetosheath, magnetotail, and Kelvin-Helmholtz vortices on the magnetopause flanks - where NASA's Magnetospheric Multiscale mission has been providing new insights into the topic.
Collapse
Affiliation(s)
- J. E. Stawarz
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST UK
| | - P. A. Muñoz
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - N. Bessho
- Department of Astronomy, University of Maryland, College Park, MD 20742 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - R. Bandyopadhyay
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | - T. K. M. Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
- Krimgen LLC, Hiroshima, 7320828, Japan
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - D. B. Graham
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - J. Büchner
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - A. Chasapis
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - J. F. Drake
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
- Department of Physics, Institute for Physical Science and Technology and the Joint Space Science Institute, University of Maryland, College Park, MD 20740 USA
| | - M. A. Shay
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| | - R. E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO USA
| | - H. Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - M. Swisdak
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
| | - F. D. Wilder
- University of Texas at Arlington, Arlington, TX USA
| |
Collapse
|
2
|
Richard L, Sorriso-Valvo L, Yordanova E, Graham DB, Khotyaintsev YV. Turbulence in Magnetic Reconnection Jets from Injection to Sub-Ion Scales. PHYSICAL REVIEW LETTERS 2024; 132:105201. [PMID: 38518330 DOI: 10.1103/physrevlett.132.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/02/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
We investigate turbulence in magnetic reconnection jets in the Earth's magnetotail using data from the Magnetospheric Multiscale spacecraft. We show that signatures of a limited inertial range are observed in many reconnection jets. The observed turbulence develops on the timescale of a few ion gyroperiods, resulting in intermittent multifractal energy cascade from the characteristic scale of the jet down to the ion scales. We show that at sub-ion scales, the fluctuations are close to monofractal and predominantly kinetic Alfvén waves. The observed energy transfer rate across the inertial range is ∼10^{8} J kg^{-1} s^{-1}, which is the largest reported for space plasmas so far.
Collapse
Affiliation(s)
- Louis Richard
- Swedish Institute of Space Physics, Uppsala 751 21, Sweden and Department of Physics and Astronomy, Space and Plasma Physics, Uppsala University, Uppsala 751 20, Sweden
| | - Luca Sorriso-Valvo
- CNR/ISTP-Istituto per la Scienza e la Tecnologia dei Plasmi, 70126 Bari, Italy; Space and Plasma Physics, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 114 28, Sweden; and Swedish Institute of Space Physics, Uppsala 751 21, Sweden
| | | | | | | |
Collapse
|
3
|
Oka M, Birn J, Egedal J, Guo F, Ergun RE, Turner DL, Khotyaintsev Y, Hwang KJ, Cohen IJ, Drake JF. Particle Acceleration by Magnetic Reconnection in Geospace. SPACE SCIENCE REVIEWS 2023; 219:75. [PMID: 37969745 PMCID: PMC10630319 DOI: 10.1007/s11214-023-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
Collapse
Affiliation(s)
- Mitsuo Oka
- Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, 94720 CA USA
| | - Joachim Birn
- Center for Space Plasma Physics, Space Science Institute, 4765 Walnut Street, Boulder, 80301 CO USA
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Jan Egedal
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, 53706 WI USA
| | - Fan Guo
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Robert E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, 80303 CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, 2000 Colorado Avenue, Boulder, 80309 CO USA
| | - Drew L. Turner
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | | | - Kyoung-Joo Hwang
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 TX USA
| | - Ian J. Cohen
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | - James F. Drake
- Department of Physics, The Institute for Physical Science and Technology and The Joint Space Science Institute, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
4
|
Hnat B, Chapman S, Watkins N. Topology of turbulence within collisionless plasma reconnection. Sci Rep 2023; 13:18665. [PMID: 37907579 PMCID: PMC10618222 DOI: 10.1038/s41598-023-45650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
In near-collisionless plasmas, which are ubiquitous in astrophysics, entropy production relies on fully-nonlinear processes such as turbulence and reconnection, which lead to particle acceleration. Mechanisms for turbulent reconnection include multiple magnetic flux ropes interacting to generate thin current sheets which undergo reconnection, leading to mixing and magnetic merging and growth of coherent structures, unstable reconnection current layers that fragment and turbulent reconnection outflows. All of these processes act across, and encompass, multiple reconnection sites. We use Magnetospheric Multi Scale four-point satellite observations to characterize the magnetic field line topology within a single reconnection current layer. We examine magnetopause reconnection where the spacecraft encounter the Electron Diffusion Region (EDR). We find fluctuating magnetic field with topology identical to that found for dynamically evolving vortices in hydrodynamic turbulence. The turbulence is supported by an electron-magnetohydrodynamic (EMHD) flow in which the magnetic field is effectively frozen into the electron fluid. Accelerated electrons are found in the EDR edge where we identify a departure from this turbulent topology, towards two-dimensional sheet-like structures. This is consistent with a scenario in which sub-ion scale turbulence can suppress electron acceleration within the EDR which would otherwise be possible in the electric field at the X-line.
Collapse
Affiliation(s)
- Bogdan Hnat
- Physics Department, Centre for Fusion Space and Astrophysics, University of Warwick, Coventry, UK.
| | - Sandra Chapman
- Physics Department, Centre for Fusion Space and Astrophysics, University of Warwick, Coventry, UK
- Department of Mathematics and Statistics, University of Tromsø, Tromsø, Norway
- International Space Science Institute, Bern, Switzerland
| | - Nicholas Watkins
- Physics Department, Centre for Fusion Space and Astrophysics, University of Warwick, Coventry, UK
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, Houghton Street, London, UK
- School of Engineering and Innovation, The Open University, Milton Keynes, UK
| |
Collapse
|
5
|
Adhikari S, Parashar TN, Shay MA, Matthaeus WH, Pyakurel PS, Fordin S, Stawarz JE, Eastwood JP. Energy transfer in reconnection and turbulence. Phys Rev E 2022; 104:065206. [PMID: 35030942 DOI: 10.1103/physreve.104.065206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von Kármán Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like energy transfer.
Collapse
Affiliation(s)
- S Adhikari
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - T N Parashar
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - M A Shay
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.,Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - W H Matthaeus
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.,Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - P S Pyakurel
- Space Sciences Laboratory, University of California, Berkeley, Berkeley, California 94720, USA
| | - S Fordin
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - J E Stawarz
- Department of Physics, Imperial College London, SW7 2AZ, United Kingdom
| | - J P Eastwood
- Department of Physics, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Uritsky VM, Roberts MA, DeVore CR, Karpen JT. Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet. THE ASTROPHYSICAL JOURNAL 2017; 837:123. [PMID: 29430025 PMCID: PMC5799884 DOI: 10.3847/1538-4357/aa5cb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller-Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.
Collapse
Affiliation(s)
- Vadim M Uritsky
- Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 USA
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Merrill A Roberts
- Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 USA
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - C Richard DeVore
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Judith T Karpen
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| |
Collapse
|
7
|
Matthaeus WH, Wan M, Servidio S, Greco A, Osman KT, Oughton S, Dmitruk P. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140154. [PMID: 25848085 PMCID: PMC4394684 DOI: 10.1098/rsta.2014.0154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 05/29/2023]
Abstract
An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.
Collapse
Affiliation(s)
- W H Matthaeus
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italy
| | - Minping Wan
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - S Servidio
- Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy
| | - A Greco
- Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy
| | - K T Osman
- Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK
| | - S Oughton
- Department of Mathematics, University of Waikato, Hamilton, New Zealand
| | - P Dmitruk
- Departamento de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wan M, Matthaeus WH, Roytershteyn V, Karimabadi H, Parashar T, Wu P, Shay M. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence. PHYSICAL REVIEW LETTERS 2015; 114:175002. [PMID: 25978241 DOI: 10.1103/physrevlett.114.175002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 06/04/2023]
Abstract
High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed.
Collapse
Affiliation(s)
- M Wan
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - W H Matthaeus
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | | | | | - T Parashar
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - P Wu
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - M Shay
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
9
|
Zhdankin V, Uzdensky DA, Boldyrev S. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence. PHYSICAL REVIEW LETTERS 2015; 114:065002. [PMID: 25723225 DOI: 10.1103/physrevlett.114.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Collapse
Affiliation(s)
- Vladimir Zhdankin
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - Dmitri A Uzdensky
- Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, Colorado 80309, USA
| | - Stanislav Boldyrev
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Direct evidence for kinetic effects associated with solar wind reconnection. Sci Rep 2015; 5:8080. [PMID: 25628139 PMCID: PMC4308709 DOI: 10.1038/srep08080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.
Collapse
|
11
|
Fermo RL, Opher M, Drake JF. Magnetic reconnection in the interior of interplanetary coronal mass ejections. PHYSICAL REVIEW LETTERS 2014; 113:031101. [PMID: 25083630 DOI: 10.1103/physrevlett.113.031101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Indexed: 06/03/2023]
Abstract
Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ∇ × B = λB with λ a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.
Collapse
Affiliation(s)
- R L Fermo
- Center for Space Physics, Astronomy Department, Boston University, Boston, Massachusetts 02215, USA
| | - M Opher
- Center for Space Physics, Astronomy Department, Boston University, Boston, Massachusetts 02215, USA
| | - J F Drake
- Institute for Research in Electronics and Applied Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-3511, USA
| |
Collapse
|
12
|
Banerjee D, Ray SS, Sahoo G, Pandit R. Multiscaling in Hall-magnetohydrodynamic turbulence: insights from a shell model. PHYSICAL REVIEW LETTERS 2013; 111:174501. [PMID: 24206495 DOI: 10.1103/physrevlett.111.174501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 06/02/2023]
Abstract
We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
Collapse
Affiliation(s)
- Debarghya Banerjee
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|