1
|
Shobeiry F, Fross P, Srinivas H, Pfeifer T, Moshammer R, Harth A. Emission control of entangled electrons in photoionisation of a hydrogen molecule. Sci Rep 2024; 14:19630. [PMID: 39179641 PMCID: PMC11343767 DOI: 10.1038/s41598-024-67465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/26/2024] Open
Abstract
For photo-dissociation of a single hydrogen molecule ( H 2 ) with combined XUV and IR laser pulses, we demonstrate optical control of the emission direction of the photoelectron with respect to the outgoing neutral fragment (the H-atom). Depending on the relative delay between the two laser fields, adjustable with sub-femtosecond time resolution, the photoelectron is emitted into the same hemisphere as the H-atom or opposite. This emission asymmetry is a result of entanglement of the two-electron final-state involving the spatially separated bound and emitted electron.
Collapse
Affiliation(s)
- Farshad Shobeiry
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany.
| | - Patrick Fross
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Hemkumar Srinivas
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Thomas Pfeifer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany.
| | - Robert Moshammer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany.
| | - Anne Harth
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117, Heidelberg, Germany.
- Center for Optical Technologies, Aalen University, Anton Huber Straße 1, 73430, Aalen, Germany.
| |
Collapse
|
2
|
Pan S, Zhang Z, Hu C, Lu P, Gong X, Gong R, Zhang W, Zhou L, Lu C, Shi M, Jiang Z, Ni H, He F, Wu J. Wave-Packet Surface Propagation for Light-Induced Molecular Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:033201. [PMID: 38307062 DOI: 10.1103/physrevlett.132.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Recent advances in laser technology have enabled tremendous progress in light-induced molecular reactions, at the heart of which the breaking and formation of chemical bonds are located. Such progress has been greatly facilitated by the development of an accurate quantum-mechanical simulation method, which, however, does not necessarily accompany clear dynamical scenarios and is rather computationally heavy. Here, we develop a wave-packet surface propagation (WASP) approach to describe the molecular bond-breaking dynamics from a hybrid quantum-classical perspective. Via the introduction of quantum elements including state transitions and phase accumulations to the Newtonian propagation of the nuclear wave packet, the WASP approach naturally comes with intuitive physical scenarios and accuracies. It is carefully benchmarked with the H_{2}^{+} molecule and is shown to be capable of precisely reproducing experimental observations. The WASP method is promising for the intuitive visualization of light-induced molecular dynamics and is straightforward extensible towards complex molecules.
Collapse
Affiliation(s)
- Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhaohan Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Hu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruolin Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Menghang Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhejun Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Srinivas H, Shobeiry F, Bharti D, Pfeifer T, Moshammer R, Harth A. High-repetition rate attosecond beamline for multi-particle coincidence experiments. OPTICS EXPRESS 2022; 30:13630-13646. [PMID: 35472972 DOI: 10.1364/oe.454553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a 3-dimensional photoelectron/ion momentum spectrometer (reaction microscope) combined with a table-top attosecond beamline based on a high-repetition rate (49 kHz) laser source is presented. The beamline is designed to achieve a temporal stability below 50 attoseconds. Results from measurements on systems like molecular hydrogen and argon dimers demonstrate the capabilities of this setup in observing the attosecond dynamics in 3D while covering the full solid angle for ionization processes having low cross-sections.
Collapse
|
4
|
Bello RY, Martín F, Palacios A. Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H 2. Faraday Discuss 2021; 228:378-393. [PMID: 33566038 DOI: 10.1039/d0fd00114g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.
Collapse
Affiliation(s)
- Roger Y Bello
- Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA
| | | | | |
Collapse
|
5
|
Kangaparambil S, Hanus V, Dorner-Kirchner M, He P, Larimian S, Paulus G, Baltuška A, Xie X, Yamanouchi K, He F, Lötstedt E, Kitzler-Zeiler M. Generalized Phase Sensitivity of Directional Bond Breaking in the Laser-Molecule Interaction. PHYSICAL REVIEW LETTERS 2020; 125:023202. [PMID: 32701337 DOI: 10.1103/physrevlett.125.023202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
We establish a generalized picture of the phase sensitivity of laser-induced directional bond breaking using the H_{2} molecule as the example. We show that the well-known proton ejection anisotropy measured with few-cycle pulses as a function of their carrier-envelope phases arises as an amplitude modulation of an intrinsic anisotropy that is sensitive to the laser phase at the ionization time and determined by the molecule's electronic structure. Our work furthermore reveals a strong electron-proton correlation that may open up a new approach to experimentally accessing the laser-sub-cycle intramolecular electron dynamics also in larger molecules.
Collapse
Affiliation(s)
| | - Václav Hanus
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | | | - Peilun He
- Key Laboratory for Laser Plasmas and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerhard Paulus
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - Kaoru Yamanouchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Feng He
- Key Laboratory for Laser Plasmas and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erik Lötstedt
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
6
|
Mi Y, Camus N, Fechner L, Laux M, Moshammer R, Pfeifer T. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H_{2} Molecules. PHYSICAL REVIEW LETTERS 2017; 118:183201. [PMID: 28524692 DOI: 10.1103/physrevlett.118.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 06/07/2023]
Abstract
Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.
Collapse
Affiliation(s)
- Yonghao Mi
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Nicolas Camus
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lutz Fechner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Martin Laux
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Robert Moshammer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Veyrinas K, Gruson V, Weber SJ, Barreau L, Ruchon T, Hergott JF, Houver JC, Lucchese RR, Salières P, Dowek D. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state. Faraday Discuss 2016; 194:161-183. [PMID: 27853775 DOI: 10.1039/c6fd00137h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.
Collapse
Affiliation(s)
- K Veyrinas
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | - V Gruson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - S J Weber
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - L Barreau
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - T Ruchon
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - J-F Hergott
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - J-C Houver
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | - R R Lucchese
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - P Salières
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - D Dowek
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
8
|
Furch FJ, Giree A, Morales F, Anderson A, Wang Y, Schulz CP, Vrakking MJJ. Close to transform-limited, few-cycle 12 µJ pulses at 400 kHz for applications in ultrafast spectroscopy. OPTICS EXPRESS 2016; 24:19293-19310. [PMID: 27557209 DOI: 10.1364/oe.24.019293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-collinear optical parametric amplification has become the leading technology for amplifying few-cycle carrier-envelope phase (CEP) stable pulses to high energy at extreme repetition rates. In this work, a parametric amplifier system devoted to ultrafast photoionization experiments with coincidence detection is reported. The amplifier delivers CEP-stable few-cycle pulses with an average power of 5 W, and operates at repetition rates between 400 and 800 kHz. Close to transform-limited compression of the few-cycle pulses is achieved with minimized spatio-temporal distortions. Potential limitations introduced by spatio-temporal couplings to applications in attosecond science are analyzed. In particular, it is shown that pulse front tilt resulting from non-collinear amplification can considerably reduce the asymmetry in stereo above threshold ionization (stereo-ATI) experiments.
Collapse
|
9
|
Rothhardt J, Hädrich S, Shamir Y, Tschnernajew M, Klas R, Hoffmann A, Tadesse GK, Klenke A, Gottschall T, Eidam T, Limpert J, Tünnermann A, Boll R, Bomme C, Dachraoui H, Erk B, Di Fraia M, Horke DA, Kierspel T, Mullins T, Przystawik A, Savelyev E, Wiese J, Laarmann T, Küpper J, Rolles D. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. OPTICS EXPRESS 2016; 24:18133-47. [PMID: 27505779 DOI: 10.1364/oe.24.018133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses.
Collapse
|
10
|
Hubele R, Schuricke M, Goullon J, Lindenblatt H, Ferreira N, Laforge A, Brühl E, de Jesus VLB, Globig D, Kelkar A, Misra D, Schneider K, Schulz M, Sell M, Song Z, Wang X, Zhang S, Fischer D. Electron and recoil ion momentum imaging with a magneto-optically trapped target. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:033105. [PMID: 25832209 DOI: 10.1063/1.4914040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT (∼2 mK) allows for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li 2(2)P3/2 state was demonstrated providing an atomic polarization of close to 100%. While first experimental results were reported earlier, in this work, we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in 266 nm laser pulses and in collisions with projectile ions.
Collapse
Affiliation(s)
- R Hubele
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Schuricke
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Goullon
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H Lindenblatt
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - N Ferreira
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Laforge
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - E Brühl
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V L B de Jesus
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rua Lucio Tavares 1045, 26530-060 Nilópolis, Rio de Janeiro, Brazil
| | - D Globig
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Kelkar
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Misra
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - K Schneider
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Schulz
- Physics Department and LAMOR, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - M Sell
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Z Song
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X Wang
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Zhang
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Fischer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Timmers H, Li Z, Shivaram N, Santra R, Vendrell O, Sandhu A. Coherent electron hole dynamics near a conical intersection. PHYSICAL REVIEW LETTERS 2014; 113:113003. [PMID: 25259975 DOI: 10.1103/physrevlett.113.113003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 06/03/2023]
Abstract
The coherent evolution of an electron hole in a photoionized molecule represents an unexplored facet of charge transfer phenomena occurring in complex systems. Using ultrafast extreme ultraviolet spectroscopy, we investigate the real-time dynamics of an electron hole wave packet created near a conical intersection in CO_{2}. We resolve the oscillation of the electron hole density between σ and π character, driven by the coupled bending and asymmetric stretch vibrations of the molecule. We also quantify the mixing between electron hole configurations and find that the wave packet coherence diminishes with time due to thermal dephasing.
Collapse
Affiliation(s)
- Henry Timmers
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Zheng Li
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg, Germany and Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | - Niranjan Shivaram
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg, Germany and Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | - Oriol Vendrell
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Arvinder Sandhu
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
12
|
|
13
|
Furch FJ, Birkner S, Kelkensberg F, Giree A, Anderson A, Schulz CP, Vrakking MJJ. Carrier-envelope phase stable few-cycle pulses at 400 kHz for electron-ion coincidence experiments. OPTICS EXPRESS 2013; 21:22671-22682. [PMID: 24104154 DOI: 10.1364/oe.21.022671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Coincident electron-ion detection after photoionization in a "reaction microscope" is a very powerful tool to study atomic and molecular dynamics. However, the implementation of this tool in the field of attosecond science has so far been rather limited, due to the lack of high repetition rate laser sources capable of delivering few-cycle pulses with sufficient energy per pulse. In this article, the development of a Non-collinear Optical Parametric Amplifier (NOPA) capable of delivering Carrier-Envelope Phase (CEP) stable pulses with sub-6 fs duration and pulse energies in the few-µJ range is presented. The potential of combining the high repetition rate source and a reaction microscope operating at this high frequency is demonstrated in a proof-of-principle experiment on strong field ionization of Ar atoms.
Collapse
|