1
|
Yu XJ, Shi SH, Xu L, Li ZX. Emergence of Competing Orders and Possible Quantum Spin Liquid in SU(N) Fermions. PHYSICAL REVIEW LETTERS 2024; 132:036704. [PMID: 38307084 DOI: 10.1103/physrevlett.132.036704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 02/04/2024]
Abstract
In the past few decades, tremendous efforts have been made toward understanding the exotic physics emerging from competition between various ordering tendencies in strongly correlated systems. Employing state-of-the-art quantum Monte Carlo simulation, we investigate an interacting SU(N) fermionic model with varying interaction strength and value of N, and we unveil the ground-state phase diagram of the model exhibiting a plethora of exotic phases. For small values of N-namely, N=2, 3-the ground state is an antiferromagnetic (AFM) phase, whereas in the large-N limit, a staggered valence bond solid (VBS) order is dominant. For intermediate values of N such as N=4, 5, remarkably, our study reveals that distinct VBS orders appear in the weak and strong coupling regimes. More fantastically, the competition between staggered and columnar VBS ordering tendencies gives rise to a Mott insulating phase without spontaneous symmetry breaking (SSB), existing in a large interacting parameter regime, which is consistent with a gapped quantum spin liquid. Our study not only provides a platform to investigate the fundamental physics of quantum many-body systems-it also offers a novel route toward searching for exotic states of matter such as quantum spin liquid in realistic quantum materials.
Collapse
Affiliation(s)
- Xue-Jia Yu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shao-Hang Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li Q, Gao Y, He YY, Qi Y, Chen BB, Li W. Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2023; 130:226502. [PMID: 37327445 DOI: 10.1103/physrevlett.130.226502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
Accurate simulations of the two-dimensional (2D) Hubbard model constitute one of the most challenging problems in condensed matter and quantum physics. Here we develop a tangent space tensor renormalization group (tanTRG) approach for the calculations of the 2D Hubbard model at finite temperature. An optimal evolution of the density operator is achieved in tanTRG with a mild O(D^{3}) complexity, where the bond dimension D controls the accuracy. With the tanTRG approach we boost the low-temperature calculations of large-scale 2D Hubbard systems on up to a width-8 cylinder and 10×10 square lattice. For the half-filled Hubbard model, the obtained results are in excellent agreement with those of determinant quantum Monte Carlo (DQMC). Moreover, tanTRG can be used to explore the low-temperature, finite-doping regime inaccessible for DQMC. The calculated charge compressibility and Matsubara Green's function are found to reflect the strange metal and pseudogap behaviors, respectively. The superconductive pairing susceptibility is computed down to a low temperature of approximately 1/24 of the hopping energy, where we find d-wave pairing responses are most significant near the optimal doping. Equipped with the tangent-space technique, tanTRG constitutes a well-controlled, highly efficient and accurate tensor network method for strongly correlated 2D lattice models at finite temperature.
Collapse
Affiliation(s)
- Qiaoyi Li
- School of Physics, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yuan Gao
- School of Physics, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan-Yao He
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Yang Qi
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Bin-Bin Chen
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijng 100190, China
| |
Collapse
|
3
|
Xu S, Barreiro JT, Wang Y, Wu C. Interaction Effects with Varying N in SU(N) Symmetric Fermion Lattice Systems. PHYSICAL REVIEW LETTERS 2018; 121:167205. [PMID: 30387656 DOI: 10.1103/physrevlett.121.167205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The interaction effects in ultracold Fermi gases with SU(N) symmetry are studied nonperturbatively in half filled one-dimensional lattices by employing quantum Monte Carlo simulations. We find that, as N increases, weak and strong interacting systems are driven to a crossover region, but from opposite directions as a convergence of itinerancy and Mottness. In the weak interaction region, particles are nearly itinerant, and interparticle collisions are enhanced by N, resulting in the amplification of interaction effects. In contrast, in the strong coupling region, increasing N softens the Mott-insulating background through the enhanced virtual hopping processes. The crossover region exhibits nearly N-independent physical quantities, including the relative bandwidth, Fermi distribution, and the spin structure factor. The difference between even-N and odd-N systems is most prominent at small N's with strong interactions, since the odd case allows local real hopping with an energy scale much larger than the virtual one. The above effects can be experimentally tested in ultracold atom experiments with alkaline-earth(-like) fermions such as ^{87}Sr (^{173}Yb).
Collapse
Affiliation(s)
- Shenglong Xu
- Department of Physics, University of California, San Diego, California 92093, USA
- Condensed Matter Theory Center and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Julio T Barreiro
- Department of Physics, University of California, San Diego, California 92093, USA
| | - Yu Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Congjun Wu
- Department of Physics, University of California, San Diego, California 92093, USA
| |
Collapse
|
4
|
Li ZX, Jiang YF, Jian SK, Yao H. Fermion-induced quantum critical points. Nat Commun 2017; 8:314. [PMID: 28827582 PMCID: PMC5566446 DOI: 10.1038/s41467-017-00167-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 12/04/2022] Open
Abstract
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Collapse
Affiliation(s)
- Zi-Xiang Li
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
| | - Yi-Fan Jiang
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
| | - Shao-Kai Jian
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China.
| |
Collapse
|
5
|
Wei ZC, Wu C, Li Y, Zhang S, Xiang T. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations. PHYSICAL REVIEW LETTERS 2016; 116:250601. [PMID: 27391709 DOI: 10.1103/physrevlett.116.250601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 06/06/2023]
Abstract
The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms.
Collapse
Affiliation(s)
- Z C Wei
- Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Congjun Wu
- Department of Physics, University of California, San Diego, California 92093, USA
| | - Yi Li
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Shiwei Zhang
- Department of Physics, The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - T Xiang
- Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| |
Collapse
|
6
|
Cazalilla MA, Rey AM. Ultracold Fermi gases with emergent SU(N) symmetry. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:124401. [PMID: 25429615 DOI: 10.1088/0034-4885/77/12/124401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking experimental achievements of recent years. The latter include (1) the cooling to below quantum degeneracy of various isotopes of ytterbium and strontium, (2) the demonstration of optical Feshbach resonances and the optical Stern-Gerlach effect, (3) the realization of a Mott insulator of (173)Yb atoms, (4) the creation of various kinds of Fermi-Bose mixtures and (5) the observation of many-body physics in optical lattice clocks. On the theory side, we survey the zoo of phases that have been predicted for both gases in a trap and loaded into an optical lattice, focusing on two and three dimensional systems. We also discuss some of the challenges that lie ahead for the realization of such phases such as reaching the temperature scale required to observe magnetic and more exotic quantum orders. The challenge of dealing with collisional relaxation of excited electronic levels is also discussed.
Collapse
Affiliation(s)
- Miguel A Cazalilla
- Department of Physics, National Tsing Hua University and National Center for Theoretical Sciences, Hsinchu City, Taiwan. Donostia International Physics Center (DIPC), Manuel de Lardizabal, 4. 20018 San Sebastian, Spain
| | | |
Collapse
|
7
|
Wang D, Li Y, Cai Z, Zhou Z, Wang Y, Wu C. Competing orders in the 2D half-filled SU(2N) Hubbard model through the pinning-field quantum Monte Carlo simulations. PHYSICAL REVIEW LETTERS 2014; 112:156403. [PMID: 24785061 DOI: 10.1103/physrevlett.112.156403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Indexed: 06/03/2023]
Abstract
We nonperturbatively investigate the ground state magnetic properties of the 2D half-filled SU(2N) Hubbard model in the square lattice by using the projector determinant quantum Monte Carlo simulations combined with the method of local pinning fields. Long-range Néel orders are found for both the SU(4) and SU(6) cases at small and intermediate values of U. In both cases, the long-range Néel moments exhibit nonmonotonic behavior with respect to U, which first grow and then drop as U increases. This result is fundamentally different from the SU(2) case in which the Néel moments increase monotonically and saturate. In the SU(6) case, a transition to the columnar dimer phase is found in the strong interaction regime.
Collapse
Affiliation(s)
- Da Wang
- Department of Physics, University of California, San Diego, California 92093, USA
| | - Yi Li
- Department of Physics, University of California, San Diego, California 92093, USA and Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Zi Cai
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Zhichao Zhou
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yu Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Congjun Wu
- Department of Physics, University of California, San Diego, California 92093, USA
| |
Collapse
|
8
|
Lang TC, Meng ZY, Muramatsu A, Wessel S, Assaad FF. Dimerized solids and resonating plaquette order in SU(N)-Dirac fermions. PHYSICAL REVIEW LETTERS 2013; 111:066401. [PMID: 23971594 DOI: 10.1103/physrevlett.111.066401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Indexed: 06/02/2023]
Abstract
We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the semimetal and an antiferromagnetic insulator.
Collapse
Affiliation(s)
- Thomas C Lang
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|