1
|
Nakamura R, Burch JL, Birn J, Chen LJ, Graham DB, Guo F, Hwang KJ, Ji H, Khotyaintsev YV, Liu YH, Oka M, Payne D, Sitnov MI, Swisdak M, Zenitani S, Drake JF, Fuselier SA, Genestreti KJ, Gershman DJ, Hasegawa H, Hoshino M, Norgren C, Shay MA, Shuster JR, Stawarz JE. Outstanding Questions and Future Research on Magnetic Reconnection. SPACE SCIENCE REVIEWS 2025; 221:17. [PMID: 39949969 PMCID: PMC11814039 DOI: 10.1007/s11214-025-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches.
Collapse
Affiliation(s)
- R. Nakamura
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
- International Space Science Institute, Bern, Switzerland
| | - J. L. Burch
- Southwest Research Institute, San Antonio, TX 78238 USA
| | - J. Birn
- Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 USA
| | - L.-J. Chen
- Goddard Space Flight Center, NASA, Greenbelt, MD 20771 USA
| | - D. B. Graham
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - F. Guo
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - K.-J. Hwang
- Southwest Research Institute, San Antonio, TX 78238 USA
| | - H. Ji
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | | | - Y.-H. Liu
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03750 USA
| | - M. Oka
- Space Science Laboratory, UC Berkeley, Berkeley, CA 94720 USA
| | - D. Payne
- University of Maryland, College Park, MD 20742 USA
| | - M. I. Sitnov
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 USA
| | - M. Swisdak
- University of Maryland, College Park, MD 20742 USA
| | - S. Zenitani
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
| | - J. F. Drake
- University of Maryland, College Park, MD 20742 USA
| | - S. A. Fuselier
- Southwest Research Institute, San Antonio, TX 78238 USA
- The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | | | - D. J. Gershman
- Goddard Space Flight Center, NASA, Greenbelt, MD 20771 USA
| | - H. Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | - M. Hoshino
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - C. Norgren
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - M. A. Shay
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| | - J. R. Shuster
- Space Science Center, University of New Hampshire, Durham, NH 03824 USA
| | - J. E. Stawarz
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Liu YH, Hesse M, Genestreti K, Nakamura R, Burch JL, Cassak PA, Bessho N, Eastwood JP, Phan T, Swisdak M, Toledo-Redondo S, Hoshino M, Norgren C, Ji H, Nakamura TKM. Ohm's Law, the Reconnection Rate, and Energy Conversion in Collisionless Magnetic Reconnection. SPACE SCIENCE REVIEWS 2025; 221:16. [PMID: 39944272 PMCID: PMC11811489 DOI: 10.1007/s11214-025-01142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm's law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.
Collapse
Affiliation(s)
- Yi-Hsin Liu
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03750 USA
| | - Michael Hesse
- Ames Research Center, NASA, Moffett Field, CA 94035 USA
| | | | - Rumi Nakamura
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
- International Space Science Institute, Bern, Switzerland
| | | | - Paul A. Cassak
- Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV 26506 USA
| | - Naoki Bessho
- NASA, Goddard Space Flight Center, Greenbelt, MD 20771 USA
- Department of Astronomy, University of Maryland, College Park, MD 20742 USA
| | | | - Tai Phan
- Space Science Laboratory, UC Berkeley, Berkeley, CA 94720 USA
| | - Marc Swisdak
- IREAP, University of Maryland, College Park, MD 20742 USA
| | | | - Masahiro Hoshino
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Cecilia Norgren
- Swedish Institute of Space Physics, Uppsala, Sweden
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Hantao Ji
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | - Takuma K. M. Nakamura
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
- Krimgen LLC, Hiroshima, 7320828, Japan
| |
Collapse
|
3
|
Ji H, Yoo J, Fox W, Yamada M, Argall M, Egedal J, Liu YH, Wilder R, Eriksson S, Daughton W, Bergstedt K, Bose S, Burch J, Torbert R, Ng J, Chen LJ. Laboratory Study of Collisionless Magnetic Reconnection. SPACE SCIENCE REVIEWS 2023; 219:76. [PMID: 38023292 PMCID: PMC10651714 DOI: 10.1007/s11214-023-01024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
A concise review is given on the past two decades' results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by the Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength, energy conversion and partitioning from magnetic field to ions and electrons including particle acceleration, electrostatic and electromagnetic kinetic plasma waves with various wavelengths, and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in collisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales.
Collapse
Affiliation(s)
- H. Ji
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Yoo
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - W. Fox
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Yamada
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Argall
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Egedal
- Department of Physics, University of Wisconsin - Madison, 1150 University Avenue, Madison, 53706 Wisconsin USA
| | - Y.-H. Liu
- Department of Physics and Astronomy, Dartmouth College, 17 Fayerweather Hill Road, Hanover, 03755 New Hampshire USA
| | - R. Wilder
- Department of Physics, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, 76019 Texas USA
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, 80303 Colorado USA
| | - W. Daughton
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, 87545 New Mexico USA
| | - K. Bergstedt
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
| | - S. Bose
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Burch
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 Texas USA
| | - R. Torbert
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Ng
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
- Department of Astronomy, University of Maryland, 4296 Stadium Drive, College Park, 20742 Maryland USA
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| | - L.-J. Chen
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| |
Collapse
|
4
|
Verscharen D, Wicks RT, Alexandrova O, Bruno R, Burgess D, Chen CHK, D’Amicis R, De Keyser J, de Wit TD, Franci L, He J, Henri P, Kasahara S, Khotyaintsev Y, Klein KG, Lavraud B, Maruca BA, Maksimovic M, Plaschke F, Poedts S, Reynolds CS, Roberts O, Sahraoui F, Saito S, Salem CS, Saur J, Servidio S, Stawarz JE, Štverák Š, Told D. A Case for Electron-Astrophysics. EXPERIMENTAL ASTRONOMY 2021; 54:473-519. [PMID: 36915623 PMCID: PMC9998602 DOI: 10.1007/s10686-021-09761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 06/18/2023]
Abstract
The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Space Science Center, University of New Hampshire, Durham, NH USA
| | - Robert T. Wicks
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Olga Alexandrova
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | - Roberto Bruno
- Instituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - David Burgess
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | | | | | - Johan De Keyser
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Thierry Dudok de Wit
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
| | - Luca Franci
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Osservatorio Astrofisico di Arcetri, INAF, Firenze, Italy
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Pierre Henri
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
- CNRS, UCA, OCA, Lagrange, Nice, France
| | - Satoshi Kasahara
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | | | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ USA
| | - Benoit Lavraud
- Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France
| | - Bennett A. Maruca
- Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE USA
| | - Milan Maksimovic
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | | | - Stefaan Poedts
- Centre for Mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium
- Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland
| | | | - Owen Roberts
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Fouad Sahraoui
- Laboratoire de Physique des Plasmas, CNRS, École Polytechnique, Sorbonne Université, Observatoire de Paris-Meudon, Paris Saclay, Palaiseau, France
| | - Shinji Saito
- Space Environment Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan
| | - Chadi S. Salem
- Space Sciences Laboratory, University of California, Berkeley, CA USA
| | - Joachim Saur
- Institut für Geophysik und Meteorologie, University of Cologne, Cologne, Germany
| | - Sergio Servidio
- Department of Physics, Università della Calabria, Rende, Italy
| | | | - Štěpán Štverák
- Astronomical Institute and Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Told
- Max Planck Institute for Plasma Physics, Garching, Germany
| |
Collapse
|
5
|
Eastwood JP, Goldman MV, Phan TD, Stawarz JE, Cassak PA, Drake JF, Newman D, Lavraud B, Shay MA, Ergun RE, Burch JL, Gershman DJ, Giles BL, Lindqvist PA, Torbert RB, Strangeway RJ, Russell CT. Energy Flux Densities near the Electron Dissipation Region in Asymmetric Magnetopause Reconnection. PHYSICAL REVIEW LETTERS 2020; 125:265102. [PMID: 33449730 DOI: 10.1103/physrevlett.125.265102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.
Collapse
Affiliation(s)
- J P Eastwood
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - M V Goldman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - J E Stawarz
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - P A Cassak
- Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - J F Drake
- Department of Physics/Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Newman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - B Lavraud
- Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- Institut de Recherche en Astrophysique et Planétologie, CNRS, CNES, Université de Toulouse, 31028 Toulouse Cedex 4, France
| | - M A Shay
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - R E Ergun
- LASP/Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - D J Gershman
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - B L Giles
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - P A Lindqvist
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - R B Torbert
- Southwest Research Institute, San Antonio, Texas 78238, USA
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - R J Strangeway
- Institute of Geophysics, Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C T Russell
- Institute of Geophysics, Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Fletcher LN, de Pater I, Orton GS, Hofstadter MD, Irwin PGJ, Roman MT, Toledo D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. SPACE SCIENCE REVIEWS 2020. [PMID: 32165773 DOI: 10.1007/s11214-019-0619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.
Collapse
Affiliation(s)
- Leigh N Fletcher
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Imke de Pater
- 3Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720 USA
| | - Glenn S Orton
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Mark D Hofstadter
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Patrick G J Irwin
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Michael T Roman
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Daniel Toledo
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| |
Collapse
|
7
|
Sitnov M, Birn J, Ferdousi B, Gordeev E, Khotyaintsev Y, Merkin V, Motoba T, Otto A, Panov E, Pritchett P, Pucci F, Raeder J, Runov A, Sergeev V, Velli M, Zhou X. Explosive Magnetotail Activity. SPACE SCIENCE REVIEWS 2019; 215:31. [PMID: 31178609 PMCID: PMC6528807 DOI: 10.1007/s11214-019-0599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/27/2019] [Indexed: 06/01/2023]
Abstract
Modes and manifestations of the explosive activity in the Earth's magnetotail, as well as its onset mechanisms and key pre-onset conditions are reviewed. Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection. Reconnection onset may require stretching and thinning of the sheet down to electron scales. It may also start in thicker sheets in regions with a tailward gradient of the equatorial magnetic field B z ; in this case it begins as an ideal-MHD instability followed by the generation of bursty bulk flows and dipolarization fronts. Indeed, remote sensing and global MHD modeling show the formation of tail regions with increased B z , prone to magnetic reconnection, ballooning/interchange and flapping instabilities. While interchange instability may also develop in such thicker sheets, it may grow more slowly compared to tearing and cause secondary reconnection locally in the dawn-dusk direction. Post-onset transients include bursty flows and dipolarization fronts, micro-instabilities of lower-hybrid-drift and whistler waves, as well as damped global flux tube oscillations in the near-Earth region. They convert the stretched tail magnetic field energy into bulk plasma acceleration and collisionless heating, excitation of a broad spectrum of plasma waves, and collisional dissipation in the ionosphere. Collisionless heating involves ion reflection from fronts, Fermi, betatron as well as other, non-adiabatic, mechanisms. Ionospheric manifestations of some of these magnetotail phenomena are discussed. Explosive plasma phenomena observed in the laboratory, the solar corona and solar wind are also discussed.
Collapse
Affiliation(s)
- Mikhail Sitnov
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | | | - Evgeny Gordeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Viacheslav Merkin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Tetsuo Motoba
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - Evgeny Panov
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Philip Pritchett
- Department of Physics and Astronomy, University of California, Los Angeles, CA USA
| | - Fulvia Pucci
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, 509-5292 Japan
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ USA
| | - Joachim Raeder
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH USA
| | - Andrei Runov
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA USA
| | - Victor Sergeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | - Marco Velli
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xuzhi Zhou
- School of Earth and Space Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
8
|
Kiehas SA, Volkonskaya NN, Semenov VS, Erkaev NV, Kubyshkin IV, Zaitsev IV. Large-scale energy budget of impulsive magnetic reconnection: Theory and simulation. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2017; 122:3212-3231. [PMID: 28529838 PMCID: PMC5413852 DOI: 10.1002/2016ja023169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 06/07/2023]
Abstract
We evaluate the large-scale energy budget of magnetic reconnection utilizing an analytical time-dependent impulsive reconnection model and a numerical 2-D MHD simulation. With the generalization to compressible plasma, we can investigate changes in the thermal, kinetic, and magnetic energies. We study these changes in three different regions: (a) the region defined by the outflowing plasma (outflow region, OR), (b) the region of compressed magnetic fields above/below the OR (traveling compression region, TCR), and (c) the region trailing the OR and TCR (wake). For incompressible plasma, we find that the decrease inside the OR is compensated by the increase in kinetic energy. However, for the general compressible case, the decrease in magnetic energy inside the OR is not sufficient to explain the increase in thermal and kinetic energy. Hence, energy from other regions needs to be considered. We find that the decrease in thermal and magnetic energy in the wake, together with the decrease in magnetic energy inside the OR, is sufficient to feed the increase in kinetic and thermal energies in the OR and the increase in magnetic and thermal energies inside the TCR. That way, the energy budget is balanced, but consequently, not all magnetic energy is converted into kinetic and thermal energies of the OR. Instead, a certain fraction gets transfered into the TCR. As an upper limit of the efficiency of reconnection (magnetic energy → kinetic energy) we find ηeff=1/2. A numerical simulation is used to include a finite thickness of the current sheet, which shows the importance of the pressure gradient inside the OR for the conversion of kinetic energy into thermal energy.
Collapse
Affiliation(s)
- S. A. Kiehas
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - N. N. Volkonskaya
- Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
| | - V. S. Semenov
- Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
| | - N. V. Erkaev
- Institute of Computational ModellingRussian Academy of Sciences, Siberian BranchKrasnoyarskRussia
- Department of Computational PhysicsSiberian Federal UniversityKrasnoyarskRussia
| | - I. V. Kubyshkin
- Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
| | - I. V. Zaitsev
- Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
9
|
Zweibel EG, Yamada M. Perspectives on magnetic reconnection. Proc Math Phys Eng Sci 2016; 472:20160479. [PMID: 28119547 PMCID: PMC5247523 DOI: 10.1098/rspa.2016.0479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/31/2016] [Indexed: 11/12/2022] Open
Abstract
Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.
Collapse
Affiliation(s)
- Ellen G Zweibel
- Departments of Astronomy and Physics, University of Wisconsin-Madison, Madison, WI, USA; Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
| | - Masaaki Yamada
- Departments of Astronomy and Physics, University of Wisconsin-Madison, Madison, WI, USA; Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Yamada M, Yoo J, Jara-Almonte J, Ji H, Kulsrud RM, Myers CE. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nat Commun 2014; 5:4774. [DOI: 10.1038/ncomms5774] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/23/2014] [Indexed: 11/09/2022] Open
|
11
|
Yoo J, Yamada M, Ji H, Jara-Almonte J, Myers CE, Chen LJ. Laboratory study of magnetic reconnection with a density asymmetry across the current sheet. PHYSICAL REVIEW LETTERS 2014; 113:095002. [PMID: 25215989 DOI: 10.1103/physrevlett.113.095002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 06/03/2023]
Abstract
The effects of a density asymmetry across the current sheet on anti-parallel magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant density ratio of up to 10, the in-plane magnetic field profile is not significantly changed. On the other hand, the out-of-plane Hall magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to quadrupolar in structure with the symmetric configuration. Moreover, the ion stagnation point is shifted to the low-density side, and the electrostatic potential profile also becomes asymmetric with a deeper potential well on the low-density side. Nonclassical bulk electron heating together with electromagnetic fluctuations in the lower hybrid frequency range is observed near the low-density-side separatrix. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations. The measured ion outflow speeds are about 40% of the theoretical values.
Collapse
Affiliation(s)
- Jongsoo Yoo
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Masaaki Yamada
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Hantao Ji
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Jonathan Jara-Almonte
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Clayton E Myers
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Li-Jen Chen
- Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA
| |
Collapse
|