1
|
Han S, Cui X, Zhang B, Li X, Ni S, Sun H, Hou M, Hu Q. Identifying dehydration-induced shear velocity anomaly in the Earth's core-mantle boundary. Innovation (N Y) 2025; 6:100740. [PMID: 39872487 PMCID: PMC11764039 DOI: 10.1016/j.xinn.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025] Open
Abstract
The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity (V S ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing V S with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer. We find its V S to be substantially lower than the post-perovskite-type bridgmanite. The dehydration of Al-enriched phase H and the redistribution of Al from the hydrous component to dry silicates would gradually raise the V S below the top of the D″ layer. The presence of 3.5 wt % water is sufficient to compensate for the thermal effects to match the seismic anomaly at the bottom of the mantle beneath Central America. The positive slope of V S versus depth in the D″ layer may fingerprint deep water recycling.
Collapse
Affiliation(s)
- Songsong Han
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Xiaoming Cui
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
| | - Baolong Zhang
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
| | - Xiaohong Li
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
| | - Heping Sun
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingqiang Hou
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| |
Collapse
|
2
|
Cobden L, Zhuang J, Lei W, Wentzcovitch R, Trampert J, Tromp J. Full-waveform tomography reveals iron spin crossover in Earth's lower mantle. Nat Commun 2024; 15:1961. [PMID: 38438365 PMCID: PMC10912123 DOI: 10.1038/s41467-024-46040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Three-dimensional models of Earth's seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean.
Collapse
Affiliation(s)
- Laura Cobden
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands.
| | - Jingyi Zhuang
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenjie Lei
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
- Google Inc., Mountain View, CA, USA
| | - Renata Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.
- Lamont Doherty Earth Observatory, Palisades, NY, 10964, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, 10010, USA.
| | - Jeannot Trampert
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands
| | - Jeroen Tromp
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
3
|
Deng X, Xu Y, Hao S, Ruan Y, Zhao Y, Wang W, Ni S, Wu Z. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity. Proc Natl Acad Sci U S A 2023; 120:e2220178120. [PMID: 37339202 PMCID: PMC10293858 DOI: 10.1073/pnas.2220178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 06/22/2023] Open
Abstract
The compositional and thermal state of Earth's mantle provides critical constraints on the origin, evolution, and dynamics of Earth. However, the chemical composition and thermal structure of the lower mantle are still poorly understood. Particularly, the nature and origin of the two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle observed from seismological studies are still debated. In this study, we inverted for the 3D chemical composition and thermal state of the lower mantle based on seismic tomography and mineral elasticity data by employing a Markov chain Monte Carlo framework. The results show a silica-enriched lower mantle with a Mg/Si ratio less than ~1.16, lower than that of the pyrolitic upper mantle (Mg/Si = 1.3). The lateral temperature distributions can be described by a Gaussian distribution with a standard deviation (SD) of 120 to 140 K at 800 to 1,600 km and the SD increases to 250 K at 2,200 km depth. However, the lateral distribution in the lowermost mantle does not follow the Gaussian distribution. We found that the velocity heterogeneities in the upper lower mantle mainly result from thermal anomalies, while those in the lowermost mantle mainly result from compositional or phase variations. The LLSVPs have higher density at the base and lower density above the depth of ~2,700 km than the ambient mantle, respectively. The LLSVPs are found to have ~500 K higher temperature, higher Bridgmanite and iron content than the ambient mantle, supporting the hypothesis that the LLSVPs may originate from an ancient basal magma ocean formed in Earth's early history.
Collapse
Affiliation(s)
- Xin Deng
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yinhan Xu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Shangqin Hao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92092
| | - Youyi Ruan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
- Institute of Earth Exploration and Sensing, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yajie Zhao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wenzhong Wang
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei430077, China
| | - Zhongqing Wu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| |
Collapse
|
4
|
Zhao Y, Wu Z, Hao S, Wang W, Deng X, Song J. Elastic properties of Fe-bearing Akimotoite at mantle conditions: Implications for composition and temperature in lower mantle transition zone. FUNDAMENTAL RESEARCH 2022; 2:570-577. [PMID: 38934001 PMCID: PMC11197629 DOI: 10.1016/j.fmre.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
The pyrolite model, which can reproduce the upper-mantle seismic velocity and density profiles, was suggested to have significantly lower velocities and density than seismic models in the lower mantle transition zone (MTZ). This argument has been taken as mineral-physics evidence for a compositionally distinct lower MTZ. However, previous studies only estimated the pyrolite velocities and density along a one-dimension (1D) geotherm and never considered the effect of lateral temperature heterogeneity. Because the majorite-perovskite-akimotoite triple point is close to the normal mantle geotherm in the lower MTZ, the lateral low-temperature anomaly can result in the presence of a significant fraction of akimotoite in pyrolitic lower MTZ. In this study, we reported the elastic properties of Fe-bearing akimotoite based on first-principles calculations. Combining with literature data, we found that the seismic velocities and density of the pyrolite model can match well those in the lower MTZ when the lateral temperature heterogeneity is modeled by a Gaussian distribution with a standard deviation of ∼100 K and an average temperature of dozens of K higher than the triple point of MgSiO3. We suggest that a harzburgite-rich lower MTZ is not required and the whole mantle convection is expected to be more favorable globally.
Collapse
Affiliation(s)
- Yajie Zhao
- Laboratory of Seismic and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhongqing Wu
- Laboratory of Seismic and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Comparative Planetology, USTC, Hefei 230026, China
| | - Shangqin Hao
- Laboratory of Seismic and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla 92092, CA, USA
| | - Wenzhong Wang
- Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Xin Deng
- Laboratory of Seismic and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian Song
- Laboratory of Seismic and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Hsu H, Umemoto K. Structural transition and re-emergence of iron's total electron spin in (Mg,Fe)O at ultrahigh pressure. Nat Commun 2022; 13:2780. [PMID: 35589702 PMCID: PMC9120148 DOI: 10.1038/s41467-022-30100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Fe-bearing MgO [(Mg1−xFex)O] is considered a major constituent of terrestrial exoplanets. Crystallizing in the B1 structure in the Earth’s lower mantle, (Mg1−xFex)O undergoes a high-spin (S = 2) to low-spin (S = 0) transition at ∼45 GPa, accompanied by anomalous changes of this mineral’s physical properties, while the intermediate-spin (S = 1) state has not been observed. In this work, we investigate (Mg1−xFex)O (x ≤ 0.25) up to 1.8 TPa via first-principles calculations. Our calculations indicate that (Mg1−xFex)O undergoes a simultaneous structural and spin transition at ∼0.6 TPa, from the B1 phase low-spin state to the B2 phase intermediate-spin state, with Fe’s total electron spin S re-emerging from 0 to 1 at ultrahigh pressure. Upon further compression, an intermediate-to-low spin transition occurs in the B2 phase. Depending on the Fe concentration (x), metal–insulator transition and rhombohedral distortions can also occur in the B2 phase. These results suggest that Fe and spin transition may affect planetary interiors over a vast pressure range. Iron spin transition occurs at ultrahigh pressure. The total electron spin increases from 0 to 1 as the structural transition of (Mg,Fe)O occurs (~0.6 TPa) and drops back to 0 at higher pressure. Its effects on exoplanet interiors are anticipated.
Collapse
Affiliation(s)
- Han Hsu
- Department of Physics, National Central University, Taoyuan City, 320317, Taiwan.
| | - Koichiro Umemoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
6
|
Mid-mantle water transportation implied by the electrical and seismic properties of ε-FeOOH. Sci Bull (Beijing) 2021; 67:748-754. [DOI: 10.1016/j.scib.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
|
7
|
Shephard GE, Houser C, Hernlund JW, Valencia-Cardona JJ, Trønnes RG, Wentzcovitch RM. Seismological expression of the iron spin crossover in ferropericlase in the Earth's lower mantle. Nat Commun 2021; 12:5905. [PMID: 34625555 PMCID: PMC8501025 DOI: 10.1038/s41467-021-26115-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover. This study identifies the predicted seismic expression of the high-to-low iron spin crossover in the deep Earth mineral ferropericlase. A depth-dependent signal is detected in the fastest and slowest regions, related to lateral temperature variations, of several global seismic tomography models.
Collapse
Affiliation(s)
- Grace E Shephard
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.
| | - Christine Houser
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - John W Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Reidar G Trønnes
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Renata M Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York City, NY, USA. .,Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA. .,Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA.
| |
Collapse
|
8
|
Wang W, Liu J, Zhu F, Li M, Dorfman SM, Li J, Wu Z. Formation of large low shear velocity provinces through the decomposition of oxidized mantle. Nat Commun 2021; 12:1911. [PMID: 33771990 PMCID: PMC7997914 DOI: 10.1038/s41467-021-22185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3-10 mol% Fe2O3 system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higher VP/VS ratio than MgSiO3 bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes.
Collapse
Affiliation(s)
- Wenzhong Wang
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.83440.3b0000000121901201Department of Earth Sciences, University College London, London, UK
| | - Jiachao Liu
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Feng Zhu
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Mingming Li
- grid.215654.10000 0001 2151 2636School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Susannah M. Dorfman
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Jie Li
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Zhongqing Wu
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui China
| |
Collapse
|
9
|
Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nat Commun 2020; 11:64. [PMID: 31911578 PMCID: PMC6946644 DOI: 10.1038/s41467-019-13720-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
Seismic heterogeneities detected in the lower mantle were proposed to be related to subducted oceanic crust. However, the velocity and density of subducted oceanic crust at lower-mantle conditions remain unknown. Here, we report ab initio results for the elastic properties of calcium ferrite-type phases and determine the velocities and density of oceanic crust along different mantle geotherms. We find that the subducted oceanic crust shows a large negative shear velocity anomaly at the phase boundary between stishovite and CaCl2-type silica, which is highly consistent with the feature of mid-mantle scatterers. After this phase transition in silica, subducted oceanic crust will be visible as high-velocity heterogeneities as imaged by seismic tomography. This study suggests that the presence of subducted oceanic crust could provide good explanations for some lower-mantle seismic heterogeneities with different length scales except large low shear velocity provinces (LLSVPs).
Collapse
|
10
|
Pressure-induced spin transition and site-selective metallization in CoCl 2. Sci Rep 2019; 9:5448. [PMID: 30931950 PMCID: PMC6443712 DOI: 10.1038/s41598-019-41337-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
The interplay between spin states and metallization in compressed CoCl2 is investigated by combining diffraction, resistivity and spectroscopy techniques under high-pressure conditions and ab-initio calculations. A pressure-induced metallization along with a Co2+ high-spin (S = 3/2) to low-spin (S = 1/2) crossover transition is observed at high pressure near 70 GPa. This metallization process, which is associated with the p-d charge-transfer band gap closure, maintains the localization of 3d electrons around Co2+, demonstrating that metallization and localized Co2+ -3d low-spin magnetism can coexist prior to the full 3d-electron delocalization (Mott-Hubbard d-d breakdown) at pressures greater than 180 GPa.
Collapse
|
11
|
Liu J, Hu Q, Bi W, Yang L, Xiao Y, Chow P, Meng Y, Prakapenka VB, Mao HK, Mao WL. Altered chemistry of oxygen and iron under deep Earth conditions. Nat Commun 2019; 10:153. [PMID: 30635572 PMCID: PMC6329810 DOI: 10.1038/s41467-018-08071-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
A drastically altered chemistry was recently discovered in the Fe-O-H system under deep Earth conditions, involving the formation of iron superoxide (FeO2Hx with x = 0 to 1), but the puzzling crystal chemistry of this system at high pressures is largely unknown. Here we present evidence that despite the high O/Fe ratio in FeO2Hx, iron remains in the ferrous, spin-paired and non-magnetic state at 60-133 GPa, while the presence of hydrogen has minimal effects on the valence of iron. The reduced iron is accompanied by oxidized oxygen due to oxygen-oxygen interactions. The valence of oxygen is not -2 as in all other major mantle minerals, instead it varies around -1. This result indicates that like iron, oxygen may have multiple valence states in our planet's interior. Our study suggests a possible change in the chemical paradigm of how oxygen, iron, and hydrogen behave under deep Earth conditions.
Collapse
Affiliation(s)
- Jin Liu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China.,Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China.
| | - Wenli Bi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liuxiang Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China.,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, 20015, USA
| | - Yuming Xiao
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Paul Chow
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yue Meng
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60439, USA
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China. .,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, 20015, USA.
| | - Wendy L Mao
- Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA. .,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
12
|
Cheng Y, Wang X, Zhang J, Yang K, Zhang C, Zeng Z, Lin H. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:155403. [PMID: 29512517 DOI: 10.1088/1361-648x/aab4b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA + U functional for describing the strongly correlated Fe-O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1-x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.
Collapse
Affiliation(s)
- Ya Cheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics. Proc Natl Acad Sci U S A 2018; 115:4099-4104. [PMID: 29610319 DOI: 10.1073/pnas.1718557115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.
Collapse
|
14
|
Deng J, Lee KKM. Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nat Commun 2017; 8:1997. [PMID: 29222478 PMCID: PMC5722891 DOI: 10.1038/s41467-017-02263-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Convection provides the mechanism behind plate tectonics, which allows oceanic lithosphere to be subducted into the mantle as "slabs" and new rock to be generated by volcanism. Stagnation of subducting slabs and deflection of rising plumes in Earth's shallow lower mantle have been suggested to result from a viscosity increase at those depths. However, the mechanism for this increase remains elusive. Here, we examine the melting behavior in the MgO-FeO binary system at high pressures using the laser-heated diamond-anvil cell and show that the liquidus and solidus of (Mg x Fe1-x )O ferropericlase (x = ~0.52-0.98), exhibit a local maximum at ~40 GPa, likely caused by the spin transition of iron. We calculate the relative viscosity profiles of ferropericlase using homologous temperature scaling and find that viscosity increases 10-100 times from ~750 km to ~1000-1250 km, with a smaller decrease at deeper depths, pointing to a single mechanism for slab stagnation and plume deflection.
Collapse
Affiliation(s)
- Jie Deng
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA.
| | - Kanani K M Lee
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
15
|
Fukui H, Baron AQR, Ishikawa D, Uchiyama H, Ohishi Y, Tsuchiya T, Kobayashi H, Matsuzaki T, Yoshino T, Katsura T. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:245401. [PMID: 28452741 DOI: 10.1088/1361-648x/aa7026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo 678-1297, Japan. Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fu S, Yang J, Lin JF. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle. PHYSICAL REVIEW LETTERS 2017; 118:036402. [PMID: 28157335 DOI: 10.1103/physrevlett.118.036402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg_{0.35}Fe_{0.65})CO_{3}] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C_{11}, C_{33}, C_{12}, and C_{13} elastic moduli associated with the compressive stress component and stiffening in C_{44} and C_{14} moduli associated with the shear stress component are observed to occur within the spin transition between ∼42.4 and ∼46.5 GPa. Negative values of C_{12} and C_{13} are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced V_{P} by 10%, in Earth's midlower mantle.
Collapse
Affiliation(s)
- Suyu Fu
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jing Yang
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
17
|
Elasticity of Ferropericlase across the Spin Crossover in the Earth's Lower Mantle. Sci Rep 2015; 5:17188. [PMID: 26621579 PMCID: PMC4664863 DOI: 10.1038/srep17188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1234. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions12345. Here we have reliably measured both VP and VS of a single-crystal ferropericlase ((Mg0.92,Fe0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa. The derived elastic constants show drastically softened C11 and C12 within the spin transition at 40–60 GPa while C44 is not affected. The spin transition is associated with a significant reduction of the aggregate VP/VS via the aggregate VP softening because VS softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in VP/VS in a pyrolite mineralogical model in mid lower-mantle. Our results imply that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.
Collapse
|
18
|
Holmström E, Stixrude L. Spin crossover in ferropericlase from first-principles molecular dynamics. PHYSICAL REVIEW LETTERS 2015; 114:117202. [PMID: 25839305 DOI: 10.1103/physrevlett.114.117202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Ferropericlase, (Mg,Fe)O, is the second-most abundant mineral of Earth's lower mantle. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to nonmagnetic spin state. We present a finite-temperature first-principles phase diagram of this spin crossover, finding a broad pressure range with coexisting magnetic and nonmagnetic ions due to favorable enthalpy of mixing of the two. Furthermore, we find the electrical conductivity of the mineral to reach semimetallic values inside Earth.
Collapse
Affiliation(s)
- E Holmström
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - L Stixrude
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
19
|
Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc Natl Acad Sci U S A 2014; 111:10468-72. [PMID: 25002507 DOI: 10.1073/pnas.1322427111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.
Collapse
|