Gorbar EV, Miransky VA, Shovkovy IA, Sukhachov PO. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons.
PHYSICAL REVIEW LETTERS 2017;
118:127601. [PMID:
28388172 DOI:
10.1103/physrevlett.118.127601]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 06/07/2023]
Abstract
We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.
Collapse