1
|
Bureau L, Coupier G, Salez T. Lift at low Reynolds number. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:111. [PMID: 37957450 DOI: 10.1140/epje/s10189-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.
Collapse
Affiliation(s)
- Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France.
| |
Collapse
|
2
|
Xiao W, Liu K, Lowengrub J, Li S, Zhao M. Three-dimensional numerical study on wrinkling of vesicles in elongation flow based on the immersed boundary method. Phys Rev E 2023; 107:035103. [PMID: 37072945 DOI: 10.1103/physreve.107.035103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/15/2023] [Indexed: 04/20/2023]
Abstract
We study the wrinkling dynamics of three-dimensional vesicles in a time-dependent elongation flow by utilizing an immersed boundary method. For a quasispherical vesicle, our numerical results well match the predictions of perturbation analysis, where similar exponential relationships between wrinkles' characteristic wavelength and the flow strength are observed. Using the same parameters as in the experiments by Kantsler et al. [V. Kantsler et al., Phys. Rev. Lett. 99, 178102 (2007)0031-900710.1103/PhysRevLett.99.178102], our simulations of an elongated vesicle are in good agreement with their results. In addition, we get rich three-dimensional morphological details, which are favorable to comprehend the two-dimensional snapshots. This morphological information helps identify wrinkle patterns. We analyze the morphological evolution of wrinkles using spherical harmonics. We find discrepancies in elongated vesicle dynamics between simulations and perturbation analysis, highlighting the importance of the nonlinear effects. Finally, we investigate the unevenly distributed local surface tension, which largely determines the position of wrinkles excited on the vesicle membrane.
Collapse
Affiliation(s)
- Wang Xiao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Liu
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China
| | - John Lowengrub
- Department of Mathematics, University of California Irvine, Irvine, California 92697, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Meng Zhao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Sinha KP, Thaokar RM. A theoretical study on the dynamics of a compound vesicle in shear flow. SOFT MATTER 2019; 15:6994-7017. [PMID: 31433433 DOI: 10.1039/c9sm01102a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamics of nucleate cells in shear flow is of great relevance in cancer cells and circulatory tumor cells where they determine the flow properties of blood. Buoyed by the success of giant unilamellar vesicles in explaining the dynamics of anucleate cells such as red blood cells, compound vesicles have been suggested as a simple model for nucleate cells. A compound vesicle consists of two concentric unilamellar vesicles with the inner, annular and outer regions filled with aqueous Newtonian solvents. In this work, a theoretical model is presented to study the deformation and dynamics of a compound vesicle in linear shear flow using small deformation theory and spherical harmonics with higher order approximation to the membrane forces. A coupling of viscous and membrane stresses at the membrane interface of the two vesicles results in highly nonlinear shape evolution equations for the inner and the outer vesicles which are solved numerically. The results indicate that the size of the inner vesicle (χ) does not affect the tank-treading dynamics of the outer vesicle. The inner vesicle admits a greater inclination angle than the outer vesicle. However, the transition to trembling/swinging and tumbling is significantly affected. The inner and outer vesicles exhibit identical dynamics in the parameter space defined by the nondimensional rotational (Λan) and extensional (S) strength of the general shear flow. At moderate χ, a swinging mode is observed for the inner vesicle while the outer vesicle exhibits tumbling. The inner vesicle also exhibits modification of the TU mode to IUS (intermediate tumbling swinging) mode. Moreover, synchronization of the two vesicles at higher χ and a Capillary number sensitive motion at lower χ is observed in the tumbling regime. These results are in accordance with the few experimental observations reported by Levant and Steinberg. A reduction in the inclination angle is observed with an increase in χ when the inner vesicle is replaced by a solid inclusion. Additionally, a very elaborate phase diagram is presented in the Λan-S parameter space, which could be tested in future experiments or numerical simulations.
Collapse
Affiliation(s)
- Kumari Priti Sinha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
4
|
Sinha KP, Thaokar RM. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime. Phys Rev E 2018; 97:032404. [PMID: 29776071 DOI: 10.1103/physreve.97.032404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 11/07/2022]
Abstract
Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.
Collapse
Affiliation(s)
- Kumari Priti Sinha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Levant M, Steinberg V. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Phys Rev E 2017; 94:062412. [PMID: 28085369 DOI: 10.1103/physreve.94.062412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/07/2022]
Abstract
In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.
Collapse
Affiliation(s)
- Michael Levant
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Victor Steinberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Liu K, Hamilton C, Allard J, Lowengrub J, Li S. Wrinkling dynamics of fluctuating vesicles in time-dependent viscous flow. SOFT MATTER 2016; 12:5663-5675. [PMID: 27136977 PMCID: PMC4927358 DOI: 10.1039/c6sm00499g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study the fully nonlinear, nonlocal dynamics of two-dimensional vesicles in a time-dependent, incompressible viscous flow at finite temperature. We focus on a transient instability that can be observed when the direction of applied flow is suddenly reversed, which induces compressive forces on the vesicle interface, and small-scale interface perturbations known as wrinkles develop. These wrinkles are driven by regions of negative elastic tension on the membrane. Using a stochastic immersed boundary method with a biophysically motivated choice of thermal fluctuations, we investigate the wrinkling dynamics numerically. Different from deterministic wrinkling dynamics, thermal fluctuations lead to symmetry-breaking wrinkling patterns by exciting higher order modes. This leads to more rapid and more realistic wrinkling dynamics. Our results are in excellent agreement with the experimental data by Kantsler et al. [Kantsler et al., Phys. Rev. Lett., 2007, 99, 17802]. We compare the nonlinear simulation results with perturbation theory, modified to account for thermal fluctuations. The strength of the applied flow strongly influences the most unstable wavelength characterizing the wrinkles, and there are significant differences between the results from perturbation theory and the fully nonlinear simulations, which suggests that the perturbation theory misses important nonlinear interactions. Strikingly, we find that thermal fluctuations actually have the ability to attenuate variability of the characteristic wavelength of wrinkling by exciting a wider range of modes than the deterministic case, which makes the evolution less constrained and enables the most unstable wavelength to emerge more readily. We further find that thermal noise helps prevent the vesicle from rotating if it is misaligned with the direction of the applied extensional flow.
Collapse
Affiliation(s)
- Kai Liu
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, USA. and Department of Mathematics, University of California in Irvine, Irvine, USA
| | - Caleb Hamilton
- Department of Mathematics, University of California in Irvine, Irvine, USA
| | - Jun Allard
- Department of Mathematics, University of California in Irvine, Irvine, USA and Department of Physics, University of California in Irvine, USA
| | - John Lowengrub
- Department of Mathematics, University of California in Irvine, Irvine, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, USA.
| |
Collapse
|
7
|
|
8
|
Zizzari A, Bianco M, Miglietta R, del Mercato LL, Carraro M, Sorarù A, Bonchio M, Gigli G, Rinaldi R, Viola I, Arima V. Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime. LAB ON A CHIP 2014; 14:4391-4397. [PMID: 25238401 DOI: 10.1039/c4lc00791c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.
Collapse
Affiliation(s)
- A Zizzari
- NNL, Nanoscience Institute-CNR Via Arnesano, 16, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fedosov DA, Peltomäki M, Gompper G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. SOFT MATTER 2014; 10:4258-67. [PMID: 24752231 DOI: 10.1039/c4sm00248b] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram.
Collapse
Affiliation(s)
- Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
10
|
Abreu D, Levant M, Steinberg V, Seifert U. Fluid vesicles in flow. Adv Colloid Interface Sci 2014; 208:129-41. [PMID: 24630339 DOI: 10.1016/j.cis.2014.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models. At the transition between these two regimes, strong shape deformations and amplification of thermal fluctuations generate a new regime called trembling. In this regime, the vesicle orientation oscillates quasi-periodically around the flow direction while asymmetric deformations occur. For strong enough flows, small-wavelength deformations like wrinkles are observed, similar to what happens in a suddenly reversed elongational flow. In steady elongational flow, vesicles with large excess areas deform into dumbbells at large flow rates and pearling occurs for even stronger flows. In capillary flows with parabolic flow profile, single vesicles migrate towards the center of the channel, where they adopt symmetric shapes, for two reasons. First, walls exert a hydrodynamic lift force which pushes them away. Second, shear stresses are minimal at the tip of the flow. However, symmetry is broken for vesicles with large excess areas, which flow off-center and deform asymmetrically. In suspensions, hydrodynamic interactions between vesicles add up to these two effects, making it challenging to deduce rheological properties from the dynamics of individual vesicles. Further investigations of vesicles and similar objects and their suspensions in steady or time-dependent flow will shed light on phenomena such as blood flow.
Collapse
|
11
|
Minetti C, Podgorski T, Coupier G, Dubois F. Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow. BIOMEDICAL OPTICS EXPRESS 2014; 5:1554-68. [PMID: 24877015 PMCID: PMC4026899 DOI: 10.1364/boe.5.001554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/16/2023]
Abstract
We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented.
Collapse
Affiliation(s)
- Christophe Minetti
- Service de Chimie-Physique EP, Université libre de Bruxelles, 50 Avenue F. Roosevelt, CP16/62, B-1050 Brussels, Belgium
| | - Thomas Podgorski
- Laboratoire Interdisciplinaire de Physique, CNRS-UMR 5588, Université Grenoble I, B.P. 87, 38402 Saint Martin d’Hères Cedex, France
| | - Gwennou Coupier
- Laboratoire Interdisciplinaire de Physique, CNRS-UMR 5588, Université Grenoble I, B.P. 87, 38402 Saint Martin d’Hères Cedex, France
| | - Frank Dubois
- Service de Chimie-Physique EP, Université libre de Bruxelles, 50 Avenue F. Roosevelt, CP16/62, B-1050 Brussels, Belgium
| |
Collapse
|
12
|
Levant M, Steinberg V. Complex dynamics of compound vesicles in linear flow. PHYSICAL REVIEW LETTERS 2014; 112:138106. [PMID: 24745463 DOI: 10.1103/physrevlett.112.138106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 06/03/2023]
Abstract
We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.
Collapse
Affiliation(s)
- Michael Levant
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Victor Steinberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Guedda M. Membrane compression in tumbling and vacillating-breathing regimes for quasispherical vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012703. [PMID: 24580253 DOI: 10.1103/physreve.89.012703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Indexed: 06/03/2023]
Abstract
We derive some analytical results of a well-known model for quasispherical vesicles in a linear shear flow at low deformability. Attention is focussed on the oscillatory regimes: the tumbling (TB) mode, vacillating-breathing (VB) mode, and the transition from vacillating-breathing to tumbling, depending on a control parameter Γ. It is shown that, during the VB-to-TB transition (Γ=1), the vesicle momentarily attains its maximal extension in the vorticity direction and transits through a circular profile in the shear plane for which the radius is exactly determined. In addition, we provide an explicit analytical expression for the effective membrane tension for different types of motions. We find a critical bending number below which the membrane undergoes compression at each instant and show that, during the VB-to-TB transition, a fourth-order membrane deformation is possible.
Collapse
Affiliation(s)
- M Guedda
- LAMFA, CNRS UMR 7352, Département de Mathématiques, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|