1
|
Klaiber M, Lv QZ, Sukiasyan S, Bakucz Canário D, Hatsagortsyan KZ, Keitel CH. Reconciling Conflicting Approaches for the Tunneling Time Delay in Strong Field Ionization. PHYSICAL REVIEW LETTERS 2022; 129:203201. [PMID: 36462009 DOI: 10.1103/physrevlett.129.203201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/24/2021] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock experimental results were controversially discussed, because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The method of semiclassical propagation matched with the tunneled wave function, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the origin of the tunneling time delay.
Collapse
Affiliation(s)
- M Klaiber
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Q Z Lv
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Sukiasyan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Bakucz Canário
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - K Z Hatsagortsyan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Hofmann C, Bray A, Koch W, Ni H, Shvetsov-Shilovski NI. Quantum battles in attoscience: tunnelling. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2021; 75:208. [PMID: 34720729 PMCID: PMC8550434 DOI: 10.1140/epjd/s10053-021-00224-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 05/29/2023]
Abstract
ABSTRACT What is the nature of tunnelling? This yet unanswered question is as pertinent today as it was at the dawn of quantum mechanics. This article presents a cross section of current perspectives on the interpretation, computational modelling, and numerical investigation of tunnelling processes in attosecond physics as debated in the Quantum Battles in Attoscience virtual workshop 2020. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Cornelia Hofmann
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT UK
| | - Alexander Bray
- Research School of Physics, The Australian National University, Canberra, ACT 0200 Australia
| | - Werner Koch
- Weizmann Institute of Science, Rehovot, Israel
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria
| | | |
Collapse
|
3
|
Ni H, Brennecke S, Gao X, He PL, Donsa S, Březinová I, He F, Wu J, Lein M, Tong XM, Burgdörfer J. Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. PHYSICAL REVIEW LETTERS 2020; 125:073202. [PMID: 32857561 DOI: 10.1103/physrevlett.125.073202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Interaction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol. We show that the light-field-induced momentum transfer is remarkably sensitive to properties of the ultrashort laser pulse such as its carrier-envelope phase and ellipticity. Moreover, we show that the subcycle-resolved linear momentum transfer can provide novel insights into the interplay between nonadiabatic and nondipole effects in strong-field ionization. This work paves the way towards the investigation of the so-far unexplored time-resolved nondipole nonadiabatic tunneling dynamics.
Collapse
Affiliation(s)
- Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, European Union
| | - Simon Brennecke
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany, European Union
| | - Xiang Gao
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, European Union
| | - Pei-Lun He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefan Donsa
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, European Union
| | - Iva Březinová
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, European Union
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Manfred Lein
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany, European Union
| | - Xiao-Min Tong
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Joachim Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, European Union
| |
Collapse
|
4
|
Wang R, Zhang Q, Li D, Xu S, Cao P, Zhou Y, Cao W, Lu P. Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime. OPTICS EXPRESS 2019; 27:6471-6482. [PMID: 30876249 DOI: 10.1364/oe.27.006471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Quantitative identification of tunneling ionization (TI) and multiphoton ionization (MPI) with Keldysh parameter γ in intermediate regime is of great importance to better understand various ionization-triggered strong-field phenomena. We theoretically demonstrate that the numerical observable ionization delay time is a more reliable indicator for characterizing the transition from TI to MPI under different laser parameters. Using non-linear iterative curve fitting algorithm (NICFA), the detected time-dependent probability current of ionized electrons can be decoupled into weighted TI and MPI portions. This enables us to confirm that the observed plateau-like structure in ionization delay time picture at the intermediate γ originates from the competition between TI and MPI processes. A hybrid quantum and classical approach (HQCA) is developed to evaluate the weights of TI and MPI electrons in good agreement with NICFA result. Moreover, the well separated TI and MPI electrons using HQCA are further propagated classically for mapping their final momentum, which well reproduces the experimental or ab-initio numerical calculated signatures of ionized electron momentum distribution in a rather broad γ regime.
Collapse
|
5
|
Song X, Shi G, Zhang G, Xu J, Lin C, Chen J, Yang W. Attosecond Time Delay of Retrapped Resonant Ionization. PHYSICAL REVIEW LETTERS 2018; 121:103201. [PMID: 30240251 DOI: 10.1103/physrevlett.121.103201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Indexed: 06/08/2023]
Abstract
A recent ultrafast pump-probe technique has allowed measurement of time delays during photoemission in a variety of systems ranging from atoms and molecules to solids with unprecedented temporal resolution. However, identifying the underlying physics is still a challenge especially in complicated multichannel above-threshold ionization (ATI) experiments. Here we demonstrate that the time delays of different ionization pathways in ATI can be clearly resolved and extracted with a semiclassical statistical method. The remarkable phase shift of near threshold photoelectrons can be attributed to a temporary retrapping of a photoelectron by the atomic potential in a quasibound state after emerging in the continuum state. This continuum-bound-continuum scattering manifests as a new resonant effect in strong-field photoemission. Our results unify the seemingly opposing quantum Eisenbud-Wigner-Smith time delay and classical Coulomb-induced time delay by highlighting the same physical picture, which holds promise for an intuitive interpretation of time-resolved fundamental electronic processes in strong-field experiments and epistemological reexamination of the quantum-classical correspondence.
Collapse
Affiliation(s)
- Xiaohong Song
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guangluo Shi
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guojun Zhang
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jingwen Xu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Cheng Lin
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jing Chen
- Key Laboratory of High Energy Density Physics Simulation, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
- Collaborative Innovation Center of Inertial Fusion Sciences and Applications, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weifeng Yang
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
6
|
Tian J, Wang X, Eberly JH. Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization. PHYSICAL REVIEW LETTERS 2017; 118:213201. [PMID: 28598667 DOI: 10.1103/physrevlett.118.213201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Indexed: 06/07/2023]
Abstract
The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.
Collapse
Affiliation(s)
- Justin Tian
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Xu Wang
- Graduate School, China Academy of Engineering Physics, Beijing 100193, China
| | - J H Eberly
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
7
|
Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J. Energy-Resolved Ultrashort Delays of Photoelectron Emission Clocked by Orthogonal Two-Color Laser Fields. PHYSICAL REVIEW LETTERS 2017; 118:143203. [PMID: 28430519 DOI: 10.1103/physrevlett.118.143203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 06/07/2023]
Abstract
A phase-controlled orthogonal two-color (OTC) femtosecond laser pulse is employed to probe the time delay of photoelectron emission in the strong-field ionization of atoms. The OTC field spatiotemporally steers the emission dynamics of the photoelectrons and meanwhile allows us to unambiguously distinguish the main and sideband peaks of the above-threshold ionization spectrum. The relative phase shift between the main and sideband peaks, retrieved from the phase-of-phase of the photoelectron spectrum as a function of the laser phase, gradually decreases with increasing electron energy, and becomes zero for the fast electron which is mainly produced by the rescattering process. Furthermore, a Freeman resonance delay of 140±40 attoseconds between photoelectrons emitted via the 4f and 5p Rydberg states of argon is observed.
Collapse
Affiliation(s)
- Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Cheng Lin
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Feng He
- Key Laboratory of Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiying Song
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Junyang Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yunquan Liu
- Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Weifeng Yang
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Ni H, Saalmann U, Rost JM. Tunneling Ionization Time Resolved by Backpropagation. PHYSICAL REVIEW LETTERS 2016; 117:023002. [PMID: 27447504 DOI: 10.1103/physrevlett.117.023002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 06/06/2023]
Abstract
We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion.
Collapse
Affiliation(s)
- Hongcheng Ni
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Ulf Saalmann
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Jan-Michael Rost
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
9
|
Teeny N, Yakaboylu E, Bauke H, Keitel CH. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization. PHYSICAL REVIEW LETTERS 2016; 116:063003. [PMID: 26918986 DOI: 10.1103/physrevlett.116.063003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 06/05/2023]
Abstract
Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.
Collapse
Affiliation(s)
- Nicolas Teeny
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Enderalp Yakaboylu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Heiko Bauke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|