1
|
Antonio Marín Guzmán J, Erker P, Gasparinetti S, Huber M, Yunger Halpern N. Key issues review: useful autonomous quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:122001. [PMID: 39419064 DOI: 10.1088/1361-6633/ad8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum circuits; and an autonomous quantum refrigerator recently reset a superconducting qubit to near its ground state, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, circuits, clocks, etc) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.
Collapse
Affiliation(s)
- José Antonio Marín Guzmán
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
| | - Paul Erker
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Simone Gasparinetti
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marcus Huber
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Nicole Yunger Halpern
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States of America
| |
Collapse
|
2
|
Lipka-Bartosik P, Perarnau-Llobet M, Brunner N. Thermodynamic computing via autonomous quantum thermal machines. SCIENCE ADVANCES 2024; 10:eadm8792. [PMID: 39231232 PMCID: PMC11758477 DOI: 10.1126/sciadv.adm8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a nonequilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a "thermodynamic neuron," can implement any linearly separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY, and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics-based analog implementation of neural networks, and more generally a platform for thermodynamic computing.
Collapse
Affiliation(s)
| | | | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Bu JT, Zhang JQ, Ding GY, Li JC, Zhang JW, Wang B, Ding WQ, Yuan WF, Chen L, Zhong Q, Keçebaş A, Özdemir ŞK, Zhou F, Jing H, Feng M. Chiral quantum heating and cooling with an optically controlled ion. LIGHT, SCIENCE & APPLICATIONS 2024; 13:143. [PMID: 38918396 PMCID: PMC11199633 DOI: 10.1038/s41377-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs), which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP, whether the loop includes the EP or not, could lead to chiral mode conversion. Here, we show that this is valid also for quantum systems when dynamical encircling is performed in the vicinity of their Liouvillian EPs (LEPs), which include the effects of quantum jumps and associated noise-an important quantum feature not present in previous works. We demonstrate, using a Paul-trapped ultracold ion, the first chiral quantum heating and refrigeration by dynamically encircling a closed loop in the vicinity of an LEP. We witness the cycling direction to be associated with the chirality and heat release (absorption) of the quantum heat engine (quantum refrigerator). Our experiments have revealed that not only the adiabaticity breakdown but also the Landau-Zener-Stückelberg process play an essential role during dynamic encircling, resulting in chiral thermodynamic cycles. Our observations contribute to further understanding of chiral and topological features in non-Hermitian systems and pave a way to exploring the relation between chirality and quantum thermodynamics.
Collapse
Affiliation(s)
- Jin-Tao Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jian-Qi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ge-Yi Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia-Chong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia-Wei Zhang
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China
| | - Bin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Qiang Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Fei Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Liang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China
| | - Qi Zhong
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ali Keçebaş
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Şahin K Özdemir
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Fei Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China.
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, China.
| | - Mang Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China.
- Department of Physics, Zhejiang Normal University, 321004, Jinhua, China.
| |
Collapse
|
4
|
Huang K, Xi C, Long X, Liu H, Fan YA, Wang X, Zheng Y, Feng Y, Nie X, Lu D. Experimental Realization of Self-Contained Quantum Refrigeration. PHYSICAL REVIEW LETTERS 2024; 132:210403. [PMID: 38856252 DOI: 10.1103/physrevlett.132.210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
A fundamental challenge in quantum thermodynamics is the exploration of inherent dimensional constraints in thermodynamic machines. In the context of two-level systems, the most compact refrigerator necessitates the involvement of three entities, operating under self-contained conditions that preclude the use of external work sources. Here, we build such a smallest refrigerator using a nuclear spin system, where three distinct two-level carbon-13 nuclei in the same molecule are involved to facilitate the refrigeration process. The self-contained feature enables it to operate without relying on net external work, and the unique mechanism sets this refrigerator apart from its classical counterparts. We evaluate its performance under varying conditions and systematically scrutinize the cooling constraints across a spectrum of scenarios, which sheds light on the interplay between quantum information and thermodynamics.
Collapse
Affiliation(s)
- Keyi Huang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Xi
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinyue Long
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Hongfeng Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ang Fan
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyu Wang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Zheng
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yufang Feng
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinfang Nie
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Dawei Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518045, China
- International Quantum Academy, Shenzhen 518055, China
| |
Collapse
|
5
|
Leitch H, Hammam K, De Chiara G. Thermodynamics of hybrid quantum rotor devices. Phys Rev E 2024; 109:024108. [PMID: 38491686 DOI: 10.1103/physreve.109.024108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor and coupled dissipatively to two equilibrium reservoirs at different temperatures. By modeling the dynamics and the resulting steady state of the system using a collision model, we identify the functioning of the device as a thermal engine, a refrigerator, or an accelerator. In addition, we also look into the device's capacity to operate as a heat rectifier and optimize both the rectification coefficient and the heat flow simultaneously. Drawing an analogy to heat rectification and since we are interested in the conversion of energy into the rotor's kinetic energy, we introduce the concept of angular momentum rectification, which may be employed to control work extraction through an external load.
Collapse
Affiliation(s)
- Heather Leitch
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Kenza Hammam
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
6
|
Yang YJ, Liu YQ, Liu Z, Yu CS. Magnetically controlled quantum thermal devices via three nearest-neighbor coupled spin-1/2 systems. Phys Rev E 2024; 109:014142. [PMID: 38366441 DOI: 10.1103/physreve.109.014142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A quantum thermal device based on three nearest-neighbor coupled spin-1/2 systems controlled by the magnetic field is proposed. We systematically study the steady-state thermal behaviors of the system. When the two terminals of our system are in contact with two thermal reservoirs, respectively, the system behaves as a perfect thermal modulator that can manipulate heat current from zero to specific values by adjusting magnetic-field direction over different parameter ranges, since the longitudinal magnetic field can completely block the heat transport. Significantly, the modulator can also be achieved when a third thermal reservoir perturbs the middle spin. We also find that the transverse field can induce the system to separate into two subspaces in which neither steady-state heat current vanishes, thus providing an extra level of control over the heat current through the manipulation of the initial state. In addition, the performance of this device as a transistor can be enhanced by controlling the magnetic field, achieving versatile amplification behaviors, in particular substantial amplification factors.
Collapse
Affiliation(s)
- Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Zheng Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Yang YJ, Liu YQ, Yu CS. Quantum thermal diode dominated by pure classical correlation via three triangular-coupled qubits. Phys Rev E 2023; 107:064125. [PMID: 37464716 DOI: 10.1103/physreve.107.064125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
A quantum thermal diode is designed based on three pairwise coupled qubits, two connected to a common reservoir and the other to an independent reservoir. It is found that the internal couplings between qubits can enhance heat currents. If the two identical qubits uniformly couple with the common reservoir, the crossing dissipation will occur, leading to the initial-state-dependent steady state, which can be decomposed into the mixture of two particular steady states: the heat-conducting state generating maximum heat current and the heat-resisting state not transporting heat. However, the rectification factor doesn't depend on the initial state. In particular, we find that neither quantum entanglement nor quantum discord is present in the steady state, but the pure classical correlation shows a remarkably consistent behavior as the heat rectification factor, which reveals the vital role of classical correlation in the system.
Collapse
Affiliation(s)
- Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Mohanta S, Saryal S, Agarwalla BK. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators. Phys Rev E 2022; 105:034127. [PMID: 35428079 DOI: 10.1103/physreve.105.034127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
For steady-state autonomous absorption refrigerators operating in the linear response regime, we show that there exists a hierarchy between the relative fluctuation of currents for cold, hot, and work terminals. Our proof requires the Onsager reciprocity relation along with the refrigeration condition that sets the direction of the mean currents for each terminal. As a consequence, the universal bounds on the mean cooling power, obtained following the thermodynamic uncertainty relations, follow a hierarchy. Interestingly, within this hierarchy, the tightest bound is given in terms of the work current fluctuation. Furthermore, the relative uncertainty hierarchy introduces a bound on cooling efficiency that is tighter than the bound obtained from the thermodynamic uncertainty relations. Interestingly, all of these bounds saturate in the tight-coupling limit. We test the validity of our results for two paradigmatic absorption refrigerator models: (i) a four-level working fluid and (ii) a two-level working fluid, operating in the weak (additive) and strong (multiplicative) system-bath interaction regimes, respectively.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
9
|
Wang L, Wang Z, Wang C, Ren J. Cycle Flux Ranking of Network Analysis in Quantum Thermal Devices. PHYSICAL REVIEW LETTERS 2022; 128:067701. [PMID: 35213197 DOI: 10.1103/physrevlett.128.067701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Manipulating quantum thermal transport relies on uncovering the principle working cycles of quantum devices. Here we introduce the cycle flux ranking of network analysis to nonequilibrium thermal devices characterized as a quantum-transition network. To excavate the principal mechanism out of complex transport behaviors, we decompose the network into cycle trajectories, collect the cycle fluxes by algebraic graph theory, and select top-ranked cycle fluxes, i.e., the cycle trajectories with highest probabilities. We exemplify the cycle flux ranking in typical quantum device models, e.g., a thermal-drag spin-Seebeck pump and a quantum thermal transistor. Top-ranked cycle trajectories indeed elucidate the principal working mechanisms. Therefore, cycle flux ranking provides an alternative perspective that naturally describes the working cycle corresponding to the main functionality of quantum thermal devices, which would further guide the device optimization with desired performance.
Collapse
Affiliation(s)
- Luqin Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Zi Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Liu YQ, Yu DH, Yu CS. Common Environmental Effects on Quantum Thermal Transistor. ENTROPY (BASEL, SWITZERLAND) 2021; 24:32. [PMID: 35052057 PMCID: PMC8775262 DOI: 10.3390/e24010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Quantum thermal transistor is a microscopic thermodynamical device that can modulate and amplify heat current through two terminals by the weak heat current at the third terminal. Here we study the common environmental effects on a quantum thermal transistor made up of three strong-coupling qubits. It is shown that the functions of the thermal transistor can be maintained and the amplification rate can be modestly enhanced by the skillfully designed common environments. In particular, the presence of a dark state in the case of the completely correlated transitions can provide an additional external channel to control the heat currents without any disturbance of the amplification rate. These results show that common environmental effects can offer new insights into improving the performance of quantum thermal devices.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
| | - Deng-Hui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China; (Y.-Q.L.); (D.-H.Y.)
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Johal RS, Mehta V. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1149. [PMID: 34573774 PMCID: PMC8468726 DOI: 10.3390/e23091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction. It has been shown earlier that the said interaction provides an enhancement of cycle efficiency, with an upper bound that is tighter than the Carnot efficiency. However, the necessary conditions governing engine performance and the relevant upper bound for efficiency are unknown for the general case of arbitrary spin magnitudes. By analyzing extreme case scenarios, we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as coupled spin model. These conditions lead us to a connection between performance of quantum heat engines and the notion of majorization. Furthermore, the study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance.
Collapse
Affiliation(s)
- Ramandeep S. Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India;
| | | |
Collapse
|
12
|
Hewgill A, González JO, Palao JP, Alonso D, Ferraro A, De Chiara G. Three-qubit refrigerator with two-body interactions. Phys Rev E 2020; 101:012109. [PMID: 32069534 DOI: 10.1103/physreve.101.012109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 06/10/2023]
Abstract
We propose a three-qubit setup for the implementation of a variety of quantum thermal machines where all heat fluxes and work production can be controlled. An important configuration that can be designed is that of an absorption refrigerator, extracting heat from the coldest reservoir without the need of external work supply. Remarkably, we achieve this regime by using only two-body interactions instead of the widely employed three-body interactions. This configuration could be more easily realized in current experimental setups. We model the open-system dynamics with both a global and a local master equation thermodynamic-consistent approach. Finally, we show how this model can be employed as a heat valve, in which by varying the local field of one of the two qubits allows one to control and amplify the heat current between the other qubits.
Collapse
Affiliation(s)
- Adam Hewgill
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - J Onam González
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - José P Palao
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - Daniel Alonso
- Dpto. de Física and IUdEA: Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain
| | - Alessandro Ferraro
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
13
|
Clivaz F, Silva R, Haack G, Brask JB, Brunner N, Huber M. Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs. Phys Rev E 2019; 100:042130. [PMID: 31770926 DOI: 10.1103/physreve.100.042130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 11/07/2022]
Abstract
In classical thermodynamics the work cost of control can typically be neglected. On the contrary, in quantum thermodynamics the cost of control constitutes a fundamental contribution to the total work cost. Here, focusing on quantum refrigeration, we investigate how the level of control determines the fundamental limits to cooling and how much work is expended in the corresponding process. We compare two extremal levels of control: first, coherent operations, where the entropy of the resource is left unchanged, and, second, incoherent operations, where only energy at maximum entropy (i.e., heat) is extracted from the resource. For minimal machines, we find that the lowest achievable temperature and associated work cost depend strongly on the type of control, in both single-cycle and asymptotic regimes. We also extend our analysis to general machines. Our work provides a unified picture of the different approaches to quantum refrigeration developed in the literature, including algorithmic cooling, autonomous quantum refrigerators, and the resource theory of quantum thermodynamics.
Collapse
Affiliation(s)
- Fabien Clivaz
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland.,Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
| | - Ralph Silva
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Géraldine Haack
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jonatan Bohr Brask
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland.,Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby 2800, Denmark
| | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Marcus Huber
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Manzano G, Fazio R, Roldán É. Quantum Martingale Theory and Entropy Production. PHYSICAL REVIEW LETTERS 2019; 122:220602. [PMID: 31283254 DOI: 10.1103/physrevlett.122.220602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We employ martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally, we complement the general formalism with numerical simulations of a qubit system.
Collapse
Affiliation(s)
- Gonzalo Manzano
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Rosario Fazio
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Édgar Roldán
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
15
|
Yu CS, Guo BQ, Liu T. Quantum self-contained refrigerator in terms of the cavity quantum electrodynamics in the weak internal-coupling regime. OPTICS EXPRESS 2019; 27:6863-6877. [PMID: 30876263 DOI: 10.1364/oe.27.006863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
We present two schemes to implement the self-contained refrigerator in the framework of the cavity quantum electrodynamics. The considered refrigerators are composed of three interacting microcavities (or two microcavities simultaneously interacting with one three-level atom) separately coupling to a thermal bath with a certain temperature. Despite the local master equation employed, the proposed analytic procedure shows the perfect thermodynamical consistency. It is also demonstrated that the heat is stably extracted from the lowest temperature bath with a fixed efficiency only determined by the intrinsic properties of the refrigerators, i.e., the frequency ratio of the two cavities in contact with the two higher temperature baths. These two schemes indicate that the system with the weak internal coupling in the infinite dimensional Hilbert space can be used to realize the quantum self-contained refrigerator on the principle completely the same as the original self-contained refrigerator.
Collapse
|
16
|
Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines. Sci Rep 2019; 9:3191. [PMID: 30816164 PMCID: PMC6395647 DOI: 10.1038/s41598-019-39300-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
One of the principal objectives of quantum thermodynamics is to explore quantum effects and their potential beneficial role in thermodynamic tasks like work extraction or refrigeration. So far, even though several papers have already shown that quantum effect could indeed bring quantum advantages, a global and deeper understanding is still lacking. Here, we extend previous models of autonomous machines to include quantum batteries made of arbitrary systems of discrete spectrum. We establish their actual efficiency, which allows us to derive an efficiency upper bound, called maximal achievable efficiency, shown to be always achievable, in contrast with previous upper bounds based only on the Second Law. Such maximal achievable efficiency can be expressed simply in term of the apparent temperature of the quantum battery. This important result appears to be a powerful tool to understand how quantum features like coherence but also many-body correlations and non-thermal population distribution can be harnessed to increase the efficiency of thermal machines.
Collapse
|
17
|
|
18
|
Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V, Matsukevich D. Quantum absorption refrigerator with trapped ions. Nat Commun 2019; 10:202. [PMID: 30643131 PMCID: PMC6331551 DOI: 10.1038/s41467-018-08090-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
In recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime made possible by coherence and demonstrate cooling below both the steady-state energy and a benchmark set by classical thermodynamics.
Collapse
Affiliation(s)
- Gleb Maslennikov
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Shiqian Ding
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Roland Hablützel
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jaren Gan
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Alexandre Roulet
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jibo Dai
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Valerio Scarani
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore
| | - Dzmitry Matsukevich
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore. .,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore.
| |
Collapse
|
19
|
Mukhopadhyay C, Misra A, Bhattacharya S, Pati AK. Quantum speed limit constraints on a nanoscale autonomous refrigerator. Phys Rev E 2018; 97:062116. [PMID: 30011569 DOI: 10.1103/physreve.97.062116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/07/2022]
Abstract
Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.
Collapse
Affiliation(s)
| | - Avijit Misra
- Optics and Quantum Information Group, The Institute of Mathematical Sciences, HBNI, Chennai 600113, India
| | - Samyadeb Bhattacharya
- Harish-Chandra Research Institute, HBNI, Allahabad 211019, India.,S. N. Bose National Centre for Basic Sciences, Kolkata-700106, India
| | - Arun Kumar Pati
- Harish-Chandra Research Institute, HBNI, Allahabad 211019, India
| |
Collapse
|
20
|
He ZC, Huang XY, Yu CS. Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. Phys Rev E 2017; 96:052126. [PMID: 29347668 DOI: 10.1103/physreve.96.052126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we study the quantum self-contained refrigerator [Linden et al., Phys. Rev. Lett. 105, 130401 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.130401] in the strong internal coupling regime with engineered reservoirs. We find that if some modes of the three thermal reservoirs can be properly filtered out, the efficiency and the working domain of the refrigerator can be improved in contrast to the those in the weak internal coupling regime, which indicates one advantage of the strong internal coupling. In addition, we find that the background natural vacuum reservoir could cause the filtered refrigerator to stop working and the background natural thermal reservoir could greatly reduce the cooling efficiency.
Collapse
Affiliation(s)
- Zi-Chen He
- School of Physics, Dalian University of Technology, Dalian 116024, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
| | - Xin-Yun Huang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Brandner K, Bauer M, Seifert U. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. PHYSICAL REVIEW LETTERS 2017; 119:170602. [PMID: 29219425 DOI: 10.1103/physrevlett.119.170602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 06/07/2023]
Abstract
We identify a universal indicator for the impact of coherence on periodically driven quantum devices by dividing their power output into a classical contribution and one stemming solely from superpositions. Specializing to Lindblad dynamics and small driving amplitudes, we derive general upper bounds on both the coherent and the total power of cyclic heat engines. These constraints imply that, for sufficiently slow driving, coherence inevitably leads to power losses in the linear-response regime. We illustrate our theory by working out the experimentally relevant example of a single-qubit engine.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Michael Bauer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
22
|
Roulet A, Nimmrichter S, Arrazola JM, Seah S, Scarani V. Autonomous rotor heat engine. Phys Rev E 2017; 95:062131. [PMID: 28709328 DOI: 10.1103/physreve.95.062131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 06/07/2023]
Abstract
The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.
Collapse
Affiliation(s)
- Alexandre Roulet
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Juan Miguel Arrazola
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Stella Seah
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Valerio Scarani
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| |
Collapse
|
23
|
Silva R, Manzano G, Skrzypczyk P, Brunner N. Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys Rev E 2016; 94:032120. [PMID: 27739716 DOI: 10.1103/physreve.94.032120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Multilevel autonomous quantum thermal machines are discussed. In particular, we explore the relationship between the size of the machine (captured by Hilbert space dimension) and the performance of the machine. Using the concepts of virtual qubits and virtual temperatures, we show that higher dimensional machines can outperform smaller ones. For instance, by considering refrigerators with more levels, lower temperatures can be achieved, as well as higher power. We discuss the optimal design for refrigerators of a given dimension. As a consequence we obtain a statement of the third law in terms of Hilbert space dimension: Reaching absolute zero temperature requires infinite dimension. These results demonstrate that Hilbert space dimension should be considered a thermodynamic resource.
Collapse
Affiliation(s)
- Ralph Silva
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| | - Gonzalo Manzano
- Departamento de Física Atómica, Molecular y Nuclear and GISC, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Paul Skrzypczyk
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Nicolas Brunner
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| |
Collapse
|
24
|
Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments. ENTROPY 2016. [DOI: 10.3390/e18050166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
|
26
|
Sørdal VB, Bergli J, Galperin YM. Cooling by heating: Restoration of the third law of thermodynamics. Phys Rev E 2016; 93:032102. [PMID: 27078287 DOI: 10.1103/physreve.93.032102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/07/2022]
Abstract
We have made a simple and natural modification of a recent quantum refrigerator model presented by Cleuren et al. [Phys. Rev. Lett. 108, 120603 (2012)]. The original model consist of two metal leads acting as heat baths and a set of quantum dots that allow for electron transport between the baths. It was shown to violate the dynamic third law of thermodynamics (the unattainability principle, which states that cooling to absolute zero in finite time is impossible). By taking into consideration the finite energy level spacing Δ, in metals we restore the third law while keeping all of the original model's thermodynamic properties intact down to the limit of k(B)T ∼ Δ, where the cooling rate is quenched. The spacing Δ depends on the confinement of the electrons in the lead and therefore, according to our result larger samples (with smaller level spacing), could be cooled efficiently to lower absolute temperatures than smaller ones. However, a large lead makes the assumption of instant equilibration of electrons implausible; in reality one would only cool a small part of the sample and we would have a nonequilibrium situation. This property is expected to be model independent and raises the question whether we can find an optimal size for the lead that is to be cooled.
Collapse
Affiliation(s)
- V B Sørdal
- Department of Physics, University of Oslo, P.O. Box 1048 Blinderm, 0316 Oslo, Norway
| | - J Bergli
- Department of Physics, University of Oslo, P.O. Box 1048 Blinderm, 0316 Oslo, Norway
| | - Y M Galperin
- Department of Physics, University of Oslo, P.O. Box 1048 Blinderm, 0316 Oslo, Norway.,Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation
| |
Collapse
|
27
|
Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers. ENTROPY 2016. [DOI: 10.3390/e18040124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abstract
We propose a quantum Otto cycle based on the properties of a two-level system in a realistic out-of-thermal-equilibrium electromagnetic field acting as its sole reservoir. This steady configuration is produced without the need of active control over the state of the environment, which is a noncoherent thermal radiation, sustained only by external heat supplied to macroscopic objects. Remarkably, even for nonideal finite-time transformations, it largely over-performs the standard ideal Otto cycle and asymptotically achieves unit efficiency at finite power.
Collapse
Affiliation(s)
- Bruno Leggio
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Mauro Antezza
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France.,Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
29
|
|
30
|
Doyeux P, Leggio B, Messina R, Antezza M. Quantum thermal machine acting on a many-body quantum system: Role of correlations in thermodynamic tasks. Phys Rev E 2016; 93:022134. [PMID: 26986315 DOI: 10.1103/physreve.93.022134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 06/05/2023]
Abstract
We study the functioning of a three-level thermal machine when acting on a many-qubit system, the entire system being placed in an electromagnetic field in a stationary out-of-thermal-equilibrium configuration. This realistic setup stands between the two so-far-explored cases of single-qubit and macroscopic object targets, providing information on the scaling with system size of purely quantum properties in thermodynamic contexts. We show that, thanks to the presence of robust correlations among the qubits induced by the field, thermodynamic tasks can be delivered by the machine both locally to each qubit and collectively to the many-qubit system: This allows a task to be delivered also on systems much bigger than the machine size.
Collapse
Affiliation(s)
- Pierre Doyeux
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Bruno Leggio
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Riccardo Messina
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Mauro Antezza
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
31
|
Brask JB, Brunner N. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062101. [PMID: 26764626 DOI: 10.1103/physreve.92.062101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 06/05/2023]
Abstract
A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.
Collapse
Affiliation(s)
- Jonatan Bohr Brask
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| | - Nicolas Brunner
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| |
Collapse
|
32
|
Chapman A, Miyake A. How an autonomous quantum Maxwell demon can harness correlated information. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062125. [PMID: 26764650 DOI: 10.1103/physreve.92.062125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 06/05/2023]
Abstract
We study an autonomous quantum system which exhibits refrigeration under an information-work trade-off like a Maxwell demon. The system becomes correlated as a single "demon" qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamic advantages from access to correlated information. It is demonstrated, in a matrix product density operator formalism, that our demon can simultaneously realize refrigeration against a thermal gradient and erasure of information from its memory, which is impossible without correlations. The phenomenon can be even enhanced by the presence of quantum coherence.
Collapse
Affiliation(s)
- Adrian Chapman
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Akimasa Miyake
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
33
|
Gelbwaser-Klimovsky D, Niedenzu W, Brumer P, Kurizki G. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid". Sci Rep 2015; 5:14413. [PMID: 26394838 PMCID: PMC4585770 DOI: 10.1038/srep14413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022] Open
Abstract
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.
Collapse
Affiliation(s)
- David Gelbwaser-Klimovsky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wolfgang Niedenzu
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 3H6, Canada
| | - Gershon Kurizki
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
34
|
Correa LA, Palao JP, Alonso D. Internal dissipation and heat leaks in quantum thermodynamic cycles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032136. [PMID: 26465455 DOI: 10.1103/physreve.92.032136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 06/05/2023]
Abstract
The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.
Collapse
Affiliation(s)
- Luis A Correa
- Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - José P Palao
- IUdEA Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203, Spain and Departamento de Física, Universidad de La Laguna, 38204, Spain
| | - Daniel Alonso
- IUdEA Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203, Spain and Departamento de Física, Universidad de La Laguna, 38204, Spain
| |
Collapse
|
35
|
Silva R, Skrzypczyk P, Brunner N. Small quantum absorption refrigerator with reversed couplings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012136. [PMID: 26274153 DOI: 10.1103/physreve.92.012136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Small quantum absorption refrigerators have recently attracted renewed attention. Here we present a missing design of a two-qubit fridge, the main feature of which is that one of the two machine qubits is itself maintained at a temperature colder than the cold bath. This is achieved by "reversing" the couplings to the baths compared to previous designs, where only a transition is maintained cold. We characterize the working regime and the efficiency of the fridge. We demonstrate the soundness of the model by deriving and solving a master equation. Finally, we discuss the performance of the fridge, in particular the heat current extracted from the cold bath. We show that our model performs comparably to the standard three-level quantum fridge and thus appears appealing for possible implementations of nanoscale thermal machines.
Collapse
Affiliation(s)
- Ralph Silva
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Paul Skrzypczyk
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| | - Nicolas Brunner
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| |
Collapse
|
36
|
Abstract
Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.
Collapse
Affiliation(s)
- Ronnie Kosloff
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel;
| | | |
Collapse
|
37
|
Hartmann F, Pfeffer P, Höfling S, Kamp M, Worschech L. Voltage fluctuation to current converter with Coulomb-coupled quantum dots. PHYSICAL REVIEW LETTERS 2015; 114:146805. [PMID: 25910151 DOI: 10.1103/physrevlett.114.146805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 05/11/2023]
Abstract
We study the rectification of voltage fluctuations in a system consisting of two Coulomb-coupled quantum dots. The first quantum dot is connected to a reservoir where voltage fluctuations are supplied and the second one is attached to two separate leads via asymmetric and energy-dependent transport barriers. We observe a rectified output current through the second quantum dot depending quadratically on the noise amplitude supplied to the other Coulomb-coupled quantum dot. The current magnitude and direction can be switched by external gates, and maximum output currents are found in the nA region. The rectification delivers output powers in the pW region. Future devices derived from our sample may be applied for energy harvesting on the nanoscale beneficial for autonomous and energy-efficient electronic applications.
Collapse
Affiliation(s)
- F Hartmann
- Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany
| | - P Pfeffer
- Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany
| | - S Höfling
- Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, United Kingdom
| | - M Kamp
- Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany
| | - L Worschech
- Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
38
|
Gelbwaser-Klimovsky D, Kurizki G. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022102. [PMID: 25215684 DOI: 10.1103/physreve.90.022102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 06/03/2023]
Abstract
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
Collapse
Affiliation(s)
| | - G Kurizki
- Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
39
|
Iyer A, Chandra A, Swaminathan R. Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity. Biochim Biophys Acta Gen Subj 2014; 1840:2935-43. [PMID: 24937605 DOI: 10.1016/j.bbagen.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. METHODS The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. RESULTS We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. CONCLUSIONS We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. GENERAL SIGNIFICANCE Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil Chandra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rajaram Swaminathan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
40
|
Correa LA. Multistage quantum absorption heat pumps. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042128. [PMID: 24827213 DOI: 10.1103/physreve.89.042128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Indexed: 06/03/2023]
Abstract
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.
Collapse
Affiliation(s)
- Luis A Correa
- School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom; IUdEA Instituto Universitario de Estudios Avanzados, Universidad de La Laguna, 38203 Spain; and Departamento de Física Fundamental, Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38203 Spain
| |
Collapse
|
41
|
Brunner N, Huber M, Linden N, Popescu S, Silva R, Skrzypczyk P. Entanglement enhances cooling in microscopic quantum refrigerators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032115. [PMID: 24730798 DOI: 10.1103/physreve.89.032115] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 06/03/2023]
Abstract
Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.
Collapse
Affiliation(s)
- Nicolas Brunner
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland and H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Marcus Huber
- Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom and ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain and Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Noah Linden
- Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
| | - Sandu Popescu
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Ralph Silva
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Paul Skrzypczyk
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
42
|
Abstract
Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.
Collapse
|