1
|
Cao X, Yang J, Fandrich T, Zhang Y, Rugeramigabo EP, Brechtken B, Haug RJ, Zopf M, Ding F. A Solid-State Source of Single and Entangled Photons at Diamond SiV-Center Transitions Operating at 80K. NANO LETTERS 2023. [PMID: 37378494 DOI: 10.1021/acs.nanolett.3c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Large-scale quantum networks require the implementation of long-lived quantum memories as stationary nodes interacting with qubits of light. Epitaxially grown quantum dots hold great potential for the on-demand generation of single and entangled photons with high purity and indistinguishability. Coupling these emitters to memories with long coherence times enables the development of hybrid nanophotonic devices that incorporate the advantages of both systems. Here we report the first GaAs/AlGaAs quantum dots grown by the droplet etching and nanohole infilling method, emitting single photons with a narrow wavelength distribution (736.2 ± 1.7 nm) close to the zero-phonon line of silicon-vacancy centers. Polarization entangled photons are generated via the biexciton-exciton cascade with a fidelity of (0.73 ± 0.09). High single photon purity is maintained from 4 K (g(2)(0) = 0.07 ± 0.02) up to 80 K (g(2)(0) = 0.11 ± 0.01), therefore making this hybrid system technologically attractive for real-world quantum photonic applications.
Collapse
Affiliation(s)
- Xin Cao
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Jingzhong Yang
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Tom Fandrich
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Yiteng Zhang
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Eddy P Rugeramigabo
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Benedikt Brechtken
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Rolf J Haug
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
- Laboratorium für Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Michael Zopf
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
| | - Fei Ding
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
- Laboratorium für Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| |
Collapse
|
2
|
Ricci F, Marougail V, Varnavski O, Wu Y, Padgaonkar S, Irgen-Gioro S, Weiss EA, Goodson T. Enhanced Exciton Quantum Coherence in Single CsPbBr 3 Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy. ACS NANO 2021; 15:12955-12965. [PMID: 34346667 DOI: 10.1021/acsnano.1c01615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cesium-halide perovskite quantum dots (QDs) have gained tremendous interest as quantum emitters in quantum information processing applications due to their optical and photophysical properties. However, engineering excitonic states in quantum dots requires a deep knowledge of the coherent dynamics of their excitons at a single-particle level. Here, we use femtosecond time-resolved two-photon near-field scanning optical microscopy (NSOM) to reveal coherences involving a single cesium lead bromide perovskite QD (CsPbBr3) at room temperature. We show that, compared to other nonperovskite nanoparticles, the electronic coherence on a single perovskite QD has a relatively long lifetime of ca. 150 fs, whereas CdSe QDs have exciton coherence times shorter than 75 fs at room temperature. One possible explanation for the longer coherence time observed for the CsPbBr3 perovskite system is related to the exciton fine structure of these perovskite QDs compared to other nanoparticles. These perovskite QDs exhibit interesting optical properties that differ from those of the traditional QDs including bright triplet exciton states. In fact, due to the small amplitude of the energy gap fluctuations of dipole-allowed triplet states in perovskite QDs, the coherent superposition could be preserved for longer times. Furthermore, single-particle excitation approach implemented in this work allows us to remove effects of heterogeneity that are usually present in ensemble averaging experiments at room temperature. The realization of quantum-mechanical phase-coherence of a charge carrier that can operate at room temperature is an issue of great importance for the potential application of coherent electronic phenomena in electronic and optoelectronic devices. These interesting findings provide further evidence of the great potential of these perovskite QDs as candidates for quantum computing and information processing applications.
Collapse
Affiliation(s)
- Federica Ricci
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Veronica Marougail
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Koong ZX, Scerri E, Rambach M, Cygorek M, Brotons-Gisbert M, Picard R, Ma Y, Park SI, Song JD, Gauger EM, Gerardot BD. Coherent Dynamics in Quantum Emitters under Dichromatic Excitation. PHYSICAL REVIEW LETTERS 2021; 126:047403. [PMID: 33576652 DOI: 10.1103/physrevlett.126.047403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enabling background-free photon extraction from the emitter. While excitation is not possible without spectral overlap between the exciting pulse and the quantum emitter transition for ideal two-level systems due to cancellation of the accumulated pulse area, we find that any additional interactions that interfere with cancellation of the accumulated pulse area may lead to a finite stationary population inversion. Our spectroscopic results of a solid-state two-level system show that, while coupling to lattice vibrations helps to improve the inversion efficiency up to 50% under symmetric driving, coherent population control and a larger amount of inversion are possible using asymmetric dichromatic excitation, which we achieve by adjusting the ratio of the intensities between the red- and blue-detuned pulses. Our measured results, supported by simulations using a real-time path-integral method, offer a new perspective toward realizing efficient, background-free photon generation and extraction.
Collapse
Affiliation(s)
- Z X Koong
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - E Scerri
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Rambach
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Cygorek
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Brotons-Gisbert
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - R Picard
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Y Ma
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - S I Park
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - J D Song
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - E M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - B D Gerardot
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
4
|
Liu K, Berbezier I, Favre L, Ronda A, Abbarchi M, Donnadieu P, Voorhees PW, Aqua JN. Capillary-driven elastic attraction between quantum dots. NANOSCALE 2019; 11:7798-7804. [PMID: 30957818 DOI: 10.1039/c9nr00238c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a novel self-assembly route to align SiGe quantum dots. By a combination of theoretical analyses and experimental investigation, we show that epitaxial SiGe quantum dots can cluster in ordered closely packed assemblies, revealing an attractive phenomenon. We compute nucleation energy barriers, accounting for elastic effects between quantum dots through both elastic energy and strain-dependent surface energy. If the former is mostly repulsive, we show that the decrease in the surface energy close to an existing island reduces the nucleation barrier. It subsequently increases the probability of nucleation close to an existing island, and turns out to be equivalent to an effective attraction between dots. We show by Monte-Carlo simulations that this effect describes well the experimental results, revealing a new mechanism ruling self-organisation of quantum dots. Such a generic process could be observed in various heterogeneous systems and could pave the way for a wide range of applications.
Collapse
Affiliation(s)
- Kailang Liu
- Institut Matériaux Microélectronique Nanoscience de Provence, Aix-Marseille Université, UMR CNRS 6242, 13997 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Weinzetl C, Görlitz J, Becker JN, Walmsley IA, Poem E, Nunn J, Becher C. Coherent Control and Wave Mixing in an Ensemble of Silicon-Vacancy Centers in Diamond. PHYSICAL REVIEW LETTERS 2019; 122:063601. [PMID: 30822048 DOI: 10.1103/physrevlett.122.063601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 06/09/2023]
Abstract
Strong light-matter interactions are critical for quantum technologies based on light, such as memories or nonlinear interactions. Solid state materials will be particularly important for such applications due to the relative ease of fabrication of components. Silicon vacancy centers (SiV^{-}) in diamond feature especially narrow inhomogeneous spectral lines, which are rare in solid materials. Here, we demonstrate resonant coherent manipulation, stimulated Raman adiabatic passage, and strong light-matter interaction via the four-wave mixing of a weak signal field in an ensemble of SiV^{-} centers.
Collapse
Affiliation(s)
- Christian Weinzetl
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Johannes Görlitz
- Naturwissenschaftlich-Technische Fakultät, Fachbereich Physik, Universität des Saarlandes, Campus E 2.6, 66123 Saarbrücken, Germany
| | - Jonas Nils Becker
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Ian A Walmsley
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Eilon Poem
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joshua Nunn
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Christoph Becher
- Naturwissenschaftlich-Technische Fakultät, Fachbereich Physik, Universität des Saarlandes, Campus E 2.6, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Wang H, Duan ZC, Li YH, Chen S, Li JP, He YM, Chen MC, He Y, Ding X, Peng CZ, Schneider C, Kamp M, Höfling S, Lu CY, Pan JW. Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. PHYSICAL REVIEW LETTERS 2016; 116:213601. [PMID: 27284656 DOI: 10.1103/physrevlett.116.213601] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 06/06/2023]
Abstract
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The Hong-Ou-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7 μs, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7 μs. A temporal and spectral analysis reveals the pulsed resonance fluorescence single photons are close to the transform limit, which are readily useful for multiphoton entanglement and interferometry experiments.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Z-C Duan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Y-H Li
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Si Chen
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - J-P Li
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Y-M He
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Wüzburg, Germany
| | - M-C Chen
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Yu He
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - X Ding
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Cheng-Zhi Peng
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Christian Schneider
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Wüzburg, Germany
| | - Martin Kamp
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Wüzburg, Germany
| | - Sven Höfling
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Wüzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Chao-Yang Lu
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Jian-Wei Pan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| |
Collapse
|
7
|
Abstract
We propose a general approach of protecting a two-level system against decoherence via quantum engineering of non-classical multiple superpositions of coherent states in a non-Markovian reservoir. The scheme surprisingly only uses the system-environment interaction responsible for the decoherence and projective measurements of the two-level system. We demonstrate the method on the example of an excitonic qubit in self-assembled semiconductor quantum dots coupled to the super-Ohmic reservoir of acoustic phonons.
Collapse
|
8
|
Roy-Choudhury K, Hughes S. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs. OPTICS LETTERS 2015; 40:1838-1841. [PMID: 25872087 DOI: 10.1364/ol.40.001838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spontaneous emission rate of a quantum dot coupled to a structured photonic reservoir is determined by the frequency dependence of its local density of photon states. Through phonon-dressing, a breakdown of Fermi's golden rule can occur for certain photonic structures whose photon decay time becomes comparable to the longitudinal acoustic phonon decay times. We present a polaron master equation model to calculate the photoluminescence intensity from a coherently excited quantum dot coupled to a structured photonic reservoir. We consider examples of a semiconductor microcavity and a coupled cavity waveguide, and show clear photoluminescence intensity spectral features that contain unique signatures of the interplay between phonon and photon bath coupling.
Collapse
|
9
|
Konthasinghe K, Peiris M, Petrak B, Yu Y, Niu ZC, Muller A. Correlations in pulsed resonance fluorescence. OPTICS LETTERS 2015; 40:1846-1849. [PMID: 25872089 DOI: 10.1364/ol.40.001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the first and second-order correlations of the light scattered near-resonantly by a quantum dot under excitation by a frequency comb, i.e., a periodically pulsed laser source. In contrast to its monochromatic counterpart, the pulsed resonance fluorescence spectrum features a superposition of sidebands distributed around a central peak with maximal sideband intensity near the Rabi frequency. Distinguishing between the coherently and incoherently scattered light reveals pulse-area dependent Rabi oscillations evolving with different phase for each component. Our observations, which can be reproduced theoretically, may impact schemes for remote entanglement based on pulsed two-photon interference.
Collapse
|
10
|
Quilter JH, Brash AJ, Liu F, Glässl M, Barth AM, Axt VM, Ramsay AJ, Skolnick MS, Fox AM. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. PHYSICAL REVIEW LETTERS 2015; 114:137401. [PMID: 25884136 DOI: 10.1103/physrevlett.114.137401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Indexed: 05/28/2023]
Abstract
We demonstrate a new method to realize the population inversion of a single InGaAs/GaAs quantum dot excited by a laser pulse tuned within the neutral exciton phonon sideband. In contrast to the conventional method of inverting a two-level system by performing coherent Rabi oscillation, the inversion is achieved by rapid thermalization of the optically dressed states via incoherent phonon-assisted relaxation. A maximum exciton population of 0.67±0.06 is measured for a laser tuned 0.83 meV to higher energy. Furthermore, the phonon sideband is mapped using a two-color pump-probe technique, with its spectral form and magnitude in very good agreement with the result of path-integral calculations.
Collapse
Affiliation(s)
- J H Quilter
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - A J Brash
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - F Liu
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - M Glässl
- Institut für Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| | - A M Barth
- Institut für Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| | - V M Axt
- Institut für Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| | - A J Ramsay
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd., Cambridge CB3 0HE, United Kingdom
| | - M S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - A M Fox
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
11
|
Reiter DE, Kuhn T, Glässl M, Axt VM. The role of phonons for exciton and biexciton generation in an optically driven quantum dot. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:423203. [PMID: 25273644 DOI: 10.1088/0953-8984/26/42/423203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
For many applications of semiconductor quantum dots in quantum technology, well-controlled state preparation of the quantum dot states is mandatory. Since quantum dots are embedded in the semiconductor matrix, their interaction with phonons often plays a major role in the preparation process. In this review, we discuss the influence of phonons on three basically different optical excitation schemes that can be used for the preparation of exciton, biexciton and superposition states: a resonant excitation leading to Rabi rotations in the excitonic system, an excitation with chirped pulses exploiting the effect of adiabatic rapid passage and an off-resonant excitation giving rise to a phonon-assisted state preparation. We give an overview of experimental and theoretical results, showing the role of phonons and compare the performance of the schemes for state preparation.
Collapse
Affiliation(s)
- D E Reiter
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | | | | | | |
Collapse
|
12
|
Wei YJ, He Y, He YM, Lu CY, Pan JW, Schneider C, Kamp M, Höfling S, McCutcheon DPS, Nazir A. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity. PHYSICAL REVIEW LETTERS 2014; 113:097401. [PMID: 25216004 DOI: 10.1103/physrevlett.113.097401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 06/03/2023]
Abstract
We investigate temperature-dependent resonance fluorescence spectra obtained from a single self-assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalization of the driven dot Rabi frequency. We also present first evidence for a nonperturbative regime of phonon coupling, in which the expected linear increase in sideband linewidth as a function of temperature is canceled by the corresponding reduction in Rabi frequency. These results indicate that dephasing in semiconductor quantum dots may be less sensitive to changes in temperature than expected from a standard weak-coupling analysis of phonon effects.
Collapse
Affiliation(s)
- Yu-Jia Wei
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, & CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, & CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu-Ming He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, & CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao-Yang Lu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, & CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, & CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Christian Schneider
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Martin Kamp
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sven Höfling
- SUPA, School of Physics and Astronomy, University of St. Andrews, Saint Andrews KY16 9SS, United Kingdom; Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; and Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dara P S McCutcheon
- Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kgs Lyngby, Denmark and Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ahsan Nazir
- Photon Science Institute & School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom and Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|