1
|
Abstract
In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the 76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The Majorana and Gerda experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2×10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the Gerda experiment setting a limit on the half-life of 76Ge 0νββ decay at T1/2>1.8×1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.
Collapse
|
2
|
Agostini M, Araujo G, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D’Andrea V, Demidova EV, Marco ND, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Müller Y, Nemchenok I, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, et alAgostini M, Araujo G, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D’Andrea V, Demidova EV, Marco ND, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Csáthy JJ, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Müller Y, Nemchenok I, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, Zuzel G. Calibration of the Gerda experiment. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2021; 81:682. [PMID: 34776783 PMCID: PMC8550656 DOI: 10.1140/epjc/s10052-021-09403-2] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 05/16/2023]
Abstract
The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- β decay in76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q β β = 2039.061 ( 7 ) keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- β decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
Collapse
Affiliation(s)
- M. Agostini
- Department of Physics and Astronomy, University College London, London, UK
- Physik Department, Technische Universität München, Munich, Germany
| | - G. Araujo
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | | | - M. Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
| | - I. Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - L. Baudis
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - C. Bauer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - E. Bellotti
- Dipartimento di Fisica, Università Milano Bicocca, Milan, Italy
- INFN Milano Bicocca, Milan, Italy
| | - S. Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
- NRNU MEPhI, Moscow, Russia
| | - A. Bettini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - L. Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - V. Biancacci
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - E. Bossio
- Physik Department, Technische Universität München, Munich, Germany
| | - V. Bothe
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - V. Brudanin
- Joint Institute for Nuclear Research, Dubna, Russia
| | - R. Brugnera
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - A. Caldwell
- Max-Planck-Institut für Physik, Munich, Germany
| | | | - A. Chernogorov
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - T. Comellato
- Physik Department, Technische Universität München, Munich, Germany
| | - V. D’Andrea
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy
| | - E. V. Demidova
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
| | - N. Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
| | - E. Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - F. Fischer
- Max-Planck-Institut für Physik, Munich, Germany
| | - M. Fomina
- Joint Institute for Nuclear Research, Dubna, Russia
| | - A. Gangapshev
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - A. Garfagnini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - C. Gooch
- Max-Planck-Institut für Physik, Munich, Germany
| | - P. Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - V. Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - K. Gusev
- Joint Institute for Nuclear Research, Dubna, Russia
- National Research Centre “Kurchatov Institute”, Moscow, Russia
- Physik Department, Technische Universität München, Munich, Germany
| | | | | | - R. Hiller
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - W. Hofmann
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - J. Huang
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - M. Hult
- European Commission, JRC-Geel, Geel, Belgium
| | - L. V. Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Moscow Inst. of Physics and Technology, Moscow, Russia
| | - J. Janicskó Csáthy
- Physik Department, Technische Universität München, Munich, Germany
- Leibniz-Institut für Kristallzüchtung, Berlin, Germany
| | - J. Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - M. Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
| | - V. Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - Y. Kermaïdic
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - H. Khushbakht
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - T. Kihm
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - I. V. Kirpichnikov
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
| | - A. Klimenko
- Joint Institute for Nuclear Research, Dubna, Russia
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- Dubna State University, Dubna, Russia
| | - R. Kneißl
- Max-Planck-Institut für Physik, Munich, Germany
| | - K. T. Knöpfle
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - O. Kochetov
- Joint Institute for Nuclear Research, Dubna, Russia
| | - V. N. Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
| | - P. Krause
- Physik Department, Technische Universität München, Munich, Germany
| | - V. V. Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
| | - M. Lindner
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | | | - B. Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - G. Lutter
- European Commission, JRC-Geel, Geel, Belgium
| | - C. Macolino
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy
| | | | - W. Maneschg
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | - M. Miloradovic
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - R. Mingazheva
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - M. Misiaszek
- Institute of Physics, Jagiellonian University, Kraków, Poland
| | - P. Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - Y. Müller
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - I. Nemchenok
- Joint Institute for Nuclear Research, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - L. Pandola
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - K. Pelczar
- Institute of Physics, Jagiellonian University, Kraków, Poland
- European Commission, JRC-Geel, Geel, Belgium
| | - L. Pertoldi
- Physik Department, Technische Universität München, Munich, Germany
- INFN Padova, Padua, Italy
| | - P. Piseri
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, Milan, Italy
| | - A. Pullia
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, Milan, Italy
| | - C. Ransom
- Physik-Institut, Universität Zürich, Zurich, Switzerland
| | - L. Rauscher
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - S. Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, Milan, Italy
| | - N. Rumyantseva
- Joint Institute for Nuclear Research, Dubna, Russia
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - C. Sada
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - F. Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy
| | - S. Schönert
- Physik Department, Technische Universität München, Munich, Germany
| | - J. Schreiner
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M. Schütt
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - A-K. Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - O. Schulz
- Max-Planck-Institut für Physik, Munich, Germany
| | - M. Schwarz
- Physik Department, Technische Universität München, Munich, Germany
| | | | - O. Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - E. Shevchik
- Joint Institute for Nuclear Research, Dubna, Russia
| | | | | | - H. Simgen
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - A. Smolnikov
- Joint Institute for Nuclear Research, Dubna, Russia
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - D. Stukov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - A. A. Vasenko
- Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
| | - A. Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - C. Vignoli
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
| | - K. von Sturm
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
- INFN Padova, Padua, Italy
| | - T. Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
| | - C. Wiesinger
- Physik Department, Technische Universität München, Munich, Germany
| | - M. Wojcik
- Institute of Physics, Jagiellonian University, Kraków, Poland
| | - E. Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - B. Zatschler
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
| | - I. Zhitnikov
- Joint Institute for Nuclear Research, Dubna, Russia
| | - S. V. Zhukov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | | | - A. Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - K. Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
| | - G. Zuzel
- Institute of Physics, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
3
|
Xing ZZ, Zhao ZH. The minimal seesaw and leptogenesis models. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:066201. [PMID: 33740777 DOI: 10.1088/1361-6633/abf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Given its briefness and predictability, the minimal seesaw-a simplified version of the canonical seesaw mechanism with only two right-handed neutrino fields-has been studied in depth and from many perspectives, and now it is being pushed close to a position of directly facing experimental tests. This article is intended to provide an up-to-date review of various phenomenological aspects of the minimal seesaw and its associated leptogenesis mechanism in neutrino physics and cosmology. Our focus is on possible flavor structures of such benchmark seesaw and leptogenesis scenarios and confronting their predictions with current neutrino oscillation data and cosmological observations. In this connection particular attention will be paid to the topics of lepton number violation, lepton flavor violation, discrete flavor symmetries, CP violation and antimatter of the Universe.
Collapse
Affiliation(s)
- Zhi-Zhong Xing
- Institute of High Energy Physics and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen-Hua Zhao
- Department of Physics, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
4
|
Agostini M, Araujo GR, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Borowicz D, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Müller Y, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, et alAgostini M, Araujo GR, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biancacci V, Borowicz D, Bossio E, Bothe V, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Doroshkevich E, Fischer F, Fomina M, Gangapshev A, Garfagnini A, Gooch C, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hemmer S, Hiller R, Hofmann W, Huang J, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Khushbakht H, Kihm T, Kirpichnikov IV, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Manzanillas L, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Müller Y, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Rauscher L, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schönert S, Schreiner J, Schütt M, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Shtembari L, Simgen H, Smolnikov A, Stukov D, Vasenko AA, Veresnikova A, Vignoli C, von Sturm K, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zatschler B, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, Zuzel G. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. PHYSICAL REVIEW LETTERS 2020; 125:252502. [PMID: 33416389 DOI: 10.1103/physrevlett.125.252502] [Show More Authors] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β (0νββ) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νββ decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.
Collapse
Affiliation(s)
- M Agostini
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - G R Araujo
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - A M Bakalyarov
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - M Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - I Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - L Baudis
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - C Bauer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - E Bellotti
- Dipartimento di Fisica, Università Milano Bicocca, 20126 Milan, Italy
- INFN Milano Bicocca, 20126 Milan, Italy
| | - S Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", 117259 Moscow, Russia
| | - A Bettini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - L Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - V Biancacci
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - D Borowicz
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - E Bossio
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - V Bothe
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - V Brudanin
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - R Brugnera
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - A Caldwell
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | | | - A Chernogorov
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", 117259 Moscow, Russia
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - T Comellato
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - V D'Andrea
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - E V Demidova
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", 117259 Moscow, Russia
| | - N Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - E Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - F Fischer
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - M Fomina
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - A Gangapshev
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - A Garfagnini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - C Gooch
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - P Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - V Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - K Gusev
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - J Hakenmüller
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - R Hiller
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - W Hofmann
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - J Huang
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - M Hult
- European Commission, JRC-Geel, 2442 Geel, Belgium
| | - L V Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - J Janicskó Csáthy
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - J Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - M Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - V Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - Y Kermaïdic
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - H Khushbakht
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - T Kihm
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - I V Kirpichnikov
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", 117259 Moscow, Russia
| | - A Klimenko
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - R Kneißl
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - K T Knöpfle
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - O Kochetov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - V N Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - P Krause
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - V V Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - M Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - A Lazzaro
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - M Lindner
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - I Lippi
- INFN Padova, 35131 Padua, Italy
| | - A Lubashevskiy
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - B Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - G Lutter
- European Commission, JRC-Geel, 2442 Geel, Belgium
| | - C Macolino
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - B Majorovits
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - W Maneschg
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - L Manzanillas
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - M Miloradovic
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - R Mingazheva
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - M Misiaszek
- Institute of Physics, Jagiellonian University, 31-007 Cracow, Poland
| | - P Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - Y Müller
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - I Nemchenok
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - K Panas
- Institute of Physics, Jagiellonian University, 31-007 Cracow, Poland
| | - L Pandola
- INFN Laboratori Nazionali del Sud, 95123 Catania, Italy
| | - K Pelczar
- European Commission, JRC-Geel, 2442 Geel, Belgium
| | - L Pertoldi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, 20133 Milan, Italy
| | - A Pullia
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, 20133 Milan, Italy
| | - C Ransom
- Physik-Institut, Universität Zürich, 8057 Zurich, Switzerland
| | - L Rauscher
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - S Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, 20133 Milan, Italy
| | - N Rumyantseva
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - C Sada
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - F Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - S Schönert
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - J Schreiner
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - M Schütt
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - A-K Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - O Schulz
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - M Schwarz
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | | | - O Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - E Shevchik
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - M Shirchenko
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - L Shtembari
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - H Simgen
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - A Smolnikov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - D Stukov
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - A A Vasenko
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", 117259 Moscow, Russia
| | - A Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - C Vignoli
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 Assergi, Italy
| | - K von Sturm
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padua, Italy
- INFN Padova, 35131 Padua, Italy
| | - T Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - C Wiesinger
- Physik Department, Technische Universität München, 85748 Munich, Germany
| | - M Wojcik
- Institute of Physics, Jagiellonian University, 31-007 Cracow, Poland
| | - E Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
| | - B Zatschler
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - I Zhitnikov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - S V Zhukov
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - D Zinatulina
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - A Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - A J Zsigmond
- Max-Planck-Institut für Physik, 80805 Munich, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - G Zuzel
- Institute of Physics, Jagiellonian University, 31-007 Cracow, Poland
| |
Collapse
|
5
|
Abstract
Neutrinoless double beta (0νββ) decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limitations of the Standard Model. The rate of this process depends on both the unknown neutrino effective mass and the nuclear matrix element (M0ν) associated with the given 0νββ transition. The latter can only be provided by theoretical calculations, hence the need of accurate theoretical predictions of M0ν for the success of the experimental programs. This need drives the theoretical nuclear physics community to provide the most reliable calculations of M0ν. Among the various computational models adopted to solve the many-body nuclear problem, the shell model is widely considered as the basic framework of the microscopic description of the nucleus. Here, we review the most recent and advanced shell-model calculations of M0ν considering the light-neutrino-exchange channel for nuclei of experimental interest. We report the sensitivity of the theoretical calculations with respect to variations in the model spaces and the shell-model nuclear Hamiltonians.
Collapse
|
6
|
Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Double beta decay is a very rare nuclear process and, therefore, experiments intended to detect it must be operated deep underground and in ultra-low background conditions. Long-lived radioisotopes produced by the previous exposure of materials to cosmic rays on the Earth’s surface or even underground can become problematic for the required sensitivity. Here, the studies developed to quantify and reduce the activation yields in detectors and materials used in the set-up of these experiments will be reviewed, considering target materials like germanium, tellurium and xenon together with other ones commonly used like copper, lead, stainless steel or argon. Calculations following very different approaches and measurements from irradiation experiments using beams or directly cosmic rays will be considered for relevant radioisotopes. The effect of cosmogenic activation in present and future double beta decay projects based on different types of detectors will be analyzed too.
Collapse
|
8
|
D’Andrea V. Read-out Electronics and Signal Processing in
GERDA and Future Prospects. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202022501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The GERDA experiment searches for the neutrinoless double beta decay of 76Ge. The experiment is using 36 kg of high-purity germanium detectors, simultaneously as source and detector, deployed into ultra-pure cryogenic liquid argon. GERDA is one the leading experiment in the field, reporting the highest sensitivity on the half-life of 0νββ decay with 1.1·1026 yr, the lowest background index with 6·10−4 cts/(keV·kg·yr) and an excellent energy resolution of 0.12% (FWHM).
The search for the 0νββ decay of the isotope 76Ge will be continued in the next years by the LEGEND-200 experiment, that aims to reach a sensitivity up to 1027 yr using 200 kg of enriched HPGe detectors. The preparation of this experiment already started.
The basic concepts of the GERDA read-out electronics, obeying both the severe requirements of ultra high radio-purity and cryogenic operation, are summarized. For LEGEND-200 a new electronics design, including a separation of the preamplifier in two stages, has been already designed and realized: results from tests are presented.
Additionally, we will introduce the digital signal processing adopted for the energy reconstruction in GERDA and a new implementation of an optimum digital filter by means of the DPLMS method. This method are discussed and the first application to GERDA data are presented.
Collapse
|
9
|
Itaco N, Coraggio L, Mancino R. Neutrinoless Double-Beta Decay and Realistic Shell Model. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201922301025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on the calculation of the neutrinoless double-ß decay nuclear matrix element for 76Ge within the framework of the realistic shell model. The effective shell-model Hamiltonian and the two-body transition operator describing the decay are derived by way of many-body perturbation theory. Particular attention is focused on the role played by the so-called Pauli blocking effect in the derivation of the effective operator.
Collapse
|
10
|
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Fomina M, Gangapshev A, Garfagnini A, Giordano M, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Sala E, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Stukov D, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, et alAgostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Fomina M, Gangapshev A, Garfagnini A, Giordano M, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaïdic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Krause P, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Piseri P, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Sala E, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwarz M, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Stukov D, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, Zuzel G. Probing Majorana neutrinos with double-β decay. Science 2019; 365:1445-1448. [PMID: 31488705 DOI: 10.1126/science.aav8613] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/20/2019] [Indexed: 11/02/2022]
Abstract
A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-β (0νββ) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νββ decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νββ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.
Collapse
Affiliation(s)
- M Agostini
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - A M Bakalyarov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - M Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - I Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - L Baudis
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - C Bauer
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - E Bellotti
- Dipartimento di Fisica, Università Milano Bicocca, I-20126 Milan, Italy.,INFN Milano Bicocca, I-20126 Milan, Italy
| | - S Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia.,Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Bettini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - L Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - D Borowicz
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V Brudanin
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Brugnera
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - A Caldwell
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | | | - A Chernogorov
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - T Comellato
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - V D'Andrea
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - E V Demidova
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - N Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - A Domula
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - E Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - V Egorov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Falkenstein
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Fomina
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Gangapshev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - A Garfagnini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - M Giordano
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - P Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - V Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K Gusev
- Physik Department, Technische Universität München, D-85748 Munich, Germany.,National Research Centre "Kurchatov Institute," Moscow 123182, Russia.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - J Hakenmüller
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Hegai
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Heisel
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - S Hemmer
- INFN Padova, I-35131 Padua, Italy
| | - R Hiller
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - W Hofmann
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - M Hult
- European Commission, JRC-Geel, B-2440 Geel, Belgium
| | - L V Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - J Janicskó Csáthy
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - J Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - V Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Y Kermaïdic
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - T Kihm
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - I V Kirpichnikov
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Kirsch
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Kish
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - A Klimenko
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Kneißl
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - K T Knöpfle
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.
| | - O Kochetov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V N Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia.,Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - P Krause
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - V V Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - M Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - A Lazzaro
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - M Lindner
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - I Lippi
- INFN Padova, I-35131 Padua, Italy
| | - A Lubashevskiy
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - B Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - G Lutter
- European Commission, JRC-Geel, B-2440 Geel, Belgium
| | - C Macolino
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - B Majorovits
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - W Maneschg
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - M Miloradovic
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - R Mingazheva
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - M Misiaszek
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - P Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Nemchenok
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - K Panas
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - L Pandola
- INFN Laboratori Nazionali del Sud, I-95123 Catania, Italy
| | - K Pelczar
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, I-67100 Assergi, Italy
| | - L Pertoldi
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - A Pullia
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - C Ransom
- Physik Institut der Universität Zürich, CH-8057 Zurich, Switzerland
| | - S Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, I-20133 Milan, Italy
| | - N Rumyantseva
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - C Sada
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - E Sala
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - F Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
| | - C Schmitt
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - B Schneider
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - S Schönert
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - A-K Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - O Schulz
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - M Schwarz
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | | | - O Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - E Shevchik
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - M Shirchenko
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - H Simgen
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Smolnikov
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.,Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - L Stanco
- INFN Padova, I-35131 Padua, Italy
| | - D Stukov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - L Vanhoefer
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - A A Vasenko
- Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
| | - A Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K von Sturm
- Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35121 Padua, Italy.,INFN Padova, I-35131 Padua, Italy
| | - V Wagner
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - A Wegmann
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - T Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - C Wiesinger
- Physik Department, Technische Universität München, D-85748 Munich, Germany
| | - M Wojcik
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | - E Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Zhitnikov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - S V Zhukov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - D Zinatulina
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - A J Zsigmond
- Max-Planck-Institut für Physik, D-80805 Munich, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01069 Dresden, Germany
| | - G Zuzel
- Institute of Physics, Jagiellonian University, Cracow 40-348, Poland
| | | |
Collapse
|
11
|
Ayangeakaa AD, Janssens RVF, Zhu S, Little D, Henderson J, Wu CY, Hartley DJ, Albers M, Auranen K, Bucher B, Carpenter MP, Chowdhury P, Cline D, Crawford HL, Fallon P, Forney AM, Gade A, Hayes AB, Kondev FG, Lauritsen T, Li J, Macchiavelli AO, Rhodes D, Seweryniak D, Stolze SM, Walters WB, Wu J. Evidence for Rigid Triaxial Deformation in ^{76}Ge from a Model-Independent Analysis. PHYSICAL REVIEW LETTERS 2019; 123:102501. [PMID: 31573317 DOI: 10.1103/physrevlett.123.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 06/10/2023]
Abstract
An extensive, model-independent analysis of the nature of triaxial deformation in ^{76}Ge, a candidate for neutrinoless double-beta (0νββ) decay, was carried out following multistep Coulomb excitation. Shape parameters deduced on the basis of a rotational-invariant sum-rule analysis provided considerable insight into the underlying collectivity of the ground-state and γ bands. Both sequences were determined to be characterized by the same β and γ deformation parameter values. In addition, compelling evidence for low-spin, rigid triaxial deformation in ^{76}Ge was obtained for the first time from the analysis of the statistical fluctuations of the quadrupole asymmetry deduced from the measured E2 matrix elements. These newly determined shape parameters are important input and constraints for calculations aimed at providing, with suitable accuracy, the nuclear matrix elements relevant to 0νββ.
Collapse
Affiliation(s)
- A D Ayangeakaa
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - R V F Janssens
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
| | - S Zhu
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Little
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
| | - J Henderson
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Y Wu
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D J Hartley
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - M Albers
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - K Auranen
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B Bucher
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M P Carpenter
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - P Chowdhury
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | - D Cline
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - H L Crawford
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P Fallon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A M Forney
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - A Gade
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - A B Hayes
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - F G Kondev
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - T Lauritsen
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Li
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - A O Macchiavelli
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D Rhodes
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - D Seweryniak
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - S M Stolze
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - W B Walters
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - J Wu
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
12
|
Marković N, Roos P, Nielsen SP, Cai XX. Background reduction at DTU Nutech surface gamma laboratory. Appl Radiat Isot 2019; 151:30-38. [DOI: 10.1016/j.apradiso.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 11/27/2022]
|
13
|
Das A, Jana S, Mandal S, Nandi S. Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.055030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Ibarra A, Strobl P, Toma T. Neutrino Masses from Planck-Scale Lepton Number Breaking. PHYSICAL REVIEW LETTERS 2019; 122:081803. [PMID: 30932574 DOI: 10.1103/physrevlett.122.081803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/19/2018] [Indexed: 06/09/2023]
Abstract
We consider an extension of the standard model by right-handed neutrinos and we argue that, under plausible assumptions, a neutrino mass of O(0.1) eV is naturally generated by the breaking of the lepton number at the Planck scale, possibly by gravitational effects, without the necessity of introducing new mass scales in the model. Some implications of this framework are also briefly discussed.
Collapse
Affiliation(s)
- Alejandro Ibarra
- Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Patrick Strobl
- Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
| | - Takashi Toma
- Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
| |
Collapse
|
15
|
Feng X, Jin LC, Tuo XY, Xia SC. Light-Neutrino Exchange and Long-Distance Contributions to 0ν2β Decays: An Exploratory Study on ππ→ee. PHYSICAL REVIEW LETTERS 2019; 122:022001. [PMID: 30720288 DOI: 10.1103/physrevlett.122.022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 06/09/2023]
Abstract
We present an exploratory lattice QCD calculation of the neutrinoless double beta decay ππ→ee. Under the mechanism of light-neutrino exchange, the decay amplitude involves significant long-distance contributions. The calculation reported here, with pion masses m_{π}=420 and 140 MeV, demonstrates that the decay amplitude can be computed from first principles using lattice methods. At unphysical and physical pion masses, we obtain that amplitudes are 24% and 9% smaller than the predication from leading order chiral perturbation theory. Our findings provide the lattice QCD inputs and constraints for effective field theory. A follow-on calculation with fully controlled systematic errors will be possible with adequate computational resources.
Collapse
Affiliation(s)
- Xu Feng
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Center for High Energy Physics, Peking University, Beijing 100871, China
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Lu-Chang Jin
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Building 510, Upton, New York 11973, USA
| | - Xin-Yu Tuo
- School of Physics, Peking University, Beijing 100871, China
| | - Shi-Cheng Xia
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Graf L, Deppisch FF, Iachello F, Kotila J. Short-range neutrinoless double beta decay mechanisms. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.095023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Nicholson A, Berkowitz E, Monge-Camacho H, Brantley D, Garron N, Chang CC, Rinaldi E, Clark MA, Joó B, Kurth T, Tiburzi BC, Vranas P, Walker-Loud A. Heavy Physics Contributions to Neutrinoless Double Beta Decay from QCD. PHYSICAL REVIEW LETTERS 2018; 121:172501. [PMID: 30411940 DOI: 10.1103/physrevlett.121.172501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, beyond the standard model (BSM) physics requires detailed knowledge of nonperturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order π^{-}→π^{+} exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.
Collapse
Affiliation(s)
- A Nicholson
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - E Berkowitz
- Institut für Kernphysik and Institute for Advanced Simulation, Forschungszentrum Jülich, 54245 Jülich, Germany
| | - H Monge-Camacho
- Department of Physics, The College of William & Mary, Williamsburg, Virginia 23187, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D Brantley
- Department of Physics, The College of William & Mary, Williamsburg, Virginia 23187, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Garron
- Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - C C Chang
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E Rinaldi
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M A Clark
- NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, California 95050, USA
| | - B Joó
- Scientific Computing Group, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - T Kurth
- NERSC Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B C Tiburzi
- Department of Physics, The City College of New York, New York, New York 10031, USA
- Graduate School and University Center, The City University of New York, New York, New York 10016, USA
| | - P Vranas
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Walker-Loud
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
18
|
Cirigliano V, Dekens W, de Vries J, Graesser ML, Mereghetti E, Pastore S, van Kolck U. New Leading Contribution to Neutrinoless Double-β Decay. PHYSICAL REVIEW LETTERS 2018; 120:202001. [PMID: 29864333 DOI: 10.1103/physrevlett.120.202001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Within the framework of chiral effective field theory, we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.
Collapse
Affiliation(s)
- Vincenzo Cirigliano
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Wouter Dekens
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jordy de Vries
- Nikhef, Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
| | - Michael L Graesser
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Emanuele Mereghetti
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Saori Pastore
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ubirajara van Kolck
- Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
19
|
Verma S, Bhardwaj S. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.095022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Agostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biernat J, Bode T, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Gangapshev A, Garfagnini A, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaidic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, et alAgostini M, Bakalyarov AM, Balata M, Barabanov I, Baudis L, Bauer C, Bellotti E, Belogurov S, Bettini A, Bezrukov L, Biernat J, Bode T, Borowicz D, Brudanin V, Brugnera R, Caldwell A, Cattadori C, Chernogorov A, Comellato T, D'Andrea V, Demidova EV, Di Marco N, Domula A, Doroshkevich E, Egorov V, Falkenstein R, Gangapshev A, Garfagnini A, Grabmayr P, Gurentsov V, Gusev K, Hakenmüller J, Hegai A, Heisel M, Hemmer S, Hiller R, Hofmann W, Hult M, Inzhechik LV, Janicskó Csáthy J, Jochum J, Junker M, Kazalov V, Kermaidic Y, Kihm T, Kirpichnikov IV, Kirsch A, Kish A, Klimenko A, Kneißl R, Knöpfle KT, Kochetov O, Kornoukhov VN, Kuzminov VV, Laubenstein M, Lazzaro A, Lindner M, Lippi I, Lubashevskiy A, Lubsandorzhiev B, Lutter G, Macolino C, Majorovits B, Maneschg W, Miloradovic M, Mingazheva R, Misiaszek M, Moseev P, Nemchenok I, Panas K, Pandola L, Pelczar K, Pertoldi L, Pullia A, Ransom C, Riboldi S, Rumyantseva N, Sada C, Salamida F, Schmitt C, Schneider B, Schönert S, Schütz AK, Schulz O, Schwingenheuer B, Selivanenko O, Shevchik E, Shirchenko M, Simgen H, Smolnikov A, Stanco L, Vanhoefer L, Vasenko AA, Veresnikova A, von Sturm K, Wagner V, Wegmann A, Wester T, Wiesinger C, Wojcik M, Yanovich E, Zhitnikov I, Zhukov SV, Zinatulina D, Zschocke A, Zsigmond AJ, Zuber K, Zuzel G. Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II. PHYSICAL REVIEW LETTERS 2018; 120:132503. [PMID: 29694176 DOI: 10.1103/physrevlett.120.132503] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.
Collapse
Affiliation(s)
- M Agostini
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - A M Bakalyarov
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - M Balata
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - I Barabanov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - L Baudis
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - C Bauer
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - E Bellotti
- Dipartimento di Fisica, Università Milano Bicocca, Milan I-20126, Italy
- INFN Milano Bicocca, Milan I-20126, Italy
| | - S Belogurov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - A Bettini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - L Bezrukov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - J Biernat
- Institute of Physics, Jagiellonian University, Cracow 31-007, Poland
| | - T Bode
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - D Borowicz
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V Brudanin
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Brugnera
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - A Caldwell
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | | | - A Chernogorov
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - T Comellato
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - V D'Andrea
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - E V Demidova
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - N Di Marco
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - A Domula
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden D-01069, Germany
| | - E Doroshkevich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - V Egorov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - R Falkenstein
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - A Gangapshev
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - A Garfagnini
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - P Grabmayr
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - V Gurentsov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K Gusev
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - J Hakenmüller
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - A Hegai
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - M Heisel
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - S Hemmer
- INFN Padova, Padua I-35131, Italy
| | - R Hiller
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - W Hofmann
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - M Hult
- European Commission, JRC-Geel, Geel B-2440, Belgium
| | - L V Inzhechik
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - J Janicskó Csáthy
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - J Jochum
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - M Junker
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - V Kazalov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Y Kermaidic
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - T Kihm
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - I V Kirpichnikov
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - A Kirsch
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - A Kish
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - A Klimenko
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - R Kneißl
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | - K T Knöpfle
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - O Kochetov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - V N Kornoukhov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - V V Kuzminov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - M Laubenstein
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - A Lazzaro
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - M Lindner
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - I Lippi
- INFN Padova, Padua I-35131, Italy
| | - A Lubashevskiy
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - B Lubsandorzhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - G Lutter
- European Commission, JRC-Geel, Geel B-2440, Belgium
| | - C Macolino
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - B Majorovits
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | - W Maneschg
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - M Miloradovic
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - R Mingazheva
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - M Misiaszek
- Institute of Physics, Jagiellonian University, Cracow 31-007, Poland
| | - P Moseev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Nemchenok
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - K Panas
- Institute of Physics, Jagiellonian University, Cracow 31-007, Poland
| | - L Pandola
- INFN Laboratori Nazionali del Sud, Catania I-95123, Italy
| | - K Pelczar
- INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi I-67100, Italy
| | - L Pertoldi
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - A Pullia
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milan I-20133, Italy
| | - C Ransom
- Physik Institut der Universität Zürich, Zurich CH-8057, Switzerland
| | - S Riboldi
- Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milan I-20133, Italy
| | - N Rumyantseva
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - C Sada
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - F Salamida
- INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell'Aquila, L'Aquila, Aquila I-67100, Italy
| | - C Schmitt
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - B Schneider
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden D-01069, Germany
| | - S Schönert
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - A-K Schütz
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - O Schulz
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | | | - O Selivanenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - E Shevchik
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - M Shirchenko
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - H Simgen
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - A Smolnikov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - L Stanco
- INFN Padova, Padua I-35131, Italy
| | - L Vanhoefer
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | - A A Vasenko
- Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Moscow I-117259, Russia
| | - A Veresnikova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - K von Sturm
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padua I-35121, Italy
- INFN Padova, Padua I-35131, Italy
| | - V Wagner
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - A Wegmann
- Max-Planck-Institut für Kernphysik, Heidelberg D-69029, Germany
| | - T Wester
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden D-01069, Germany
| | - C Wiesinger
- Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany
| | - M Wojcik
- Institute of Physics, Jagiellonian University, Cracow 31-007, Poland
| | - E Yanovich
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
| | - I Zhitnikov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - S V Zhukov
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - D Zinatulina
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Zschocke
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen D-72076, Germany
| | - A J Zsigmond
- Max-Planck-Institut für Physik, Munich D-80805, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden D-01069, Germany
| | - G Zuzel
- Institute of Physics, Jagiellonian University, Cracow 31-007, Poland
| |
Collapse
|
21
|
Deppisch FF, Hati C, Patra S, Pritimita P, Sarkar U. Neutrinoless double beta decay in left-right symmetric models with a universal seesaw mechanism. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.035005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Ranitzsch PCO, Hassel C, Wegner M, Hengstler D, Kempf S, Fleischmann A, Enss C, Gastaldo L, Herlert A, Johnston K. Characterization of the ^{163}Ho Electron Capture Spectrum: A Step Towards the Electron Neutrino Mass Determination. PHYSICAL REVIEW LETTERS 2017; 119:122501. [PMID: 29341650 DOI: 10.1103/physrevlett.119.122501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The isotope ^{163}Ho is in many ways the best candidate to perform experiments to investigate the value of the electron neutrino mass. It undergoes an electron capture process to ^{163}Dy with an energy available to the decay, Q_{EC}, of about 2.8 keV. According to the present knowledge, this is the lowest Q_{EC} value for such transitions. Here we discuss a newly obtained spectrum of ^{163}Ho, taken by cryogenic metallic magnetic calorimeters with ^{163}Ho implanted in the absorbers and operated in anticoincident mode for background reduction. For the first time, the atomic deexcitation of the ^{163}Dy daughter atom following the capture of electrons from the 5s shell in ^{163}Ho, the OI line, was observed with a calorimetric measurement. The peak energy is determined to be 48 eV. In addition, a precise determination of the energy available for the decay Q_{EC}=(2.858±0.010_{stat}±0.05_{syst}) keV was obtained by analyzing the intensities of the lines in the spectrum. This value is in good agreement with the measurement of the mass difference between ^{163}Ho and ^{163}Dy obtained by Penning-trap mass spectrometry, demonstrating the reliability of the calorimetric technique.
Collapse
Affiliation(s)
- P C-O Ranitzsch
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - C Hassel
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - M Wegner
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - D Hengstler
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - S Kempf
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - A Fleischmann
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - C Enss
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - L Gastaldo
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - A Herlert
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - K Johnston
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| |
Collapse
|
23
|
von Sturm K, Belogurov S, Brugnera R, Garfagnini A, Lippi I, Modenese L, Rosso D, Turcato M. A Compton scattering setup for pulse shape discrimination studies in germanium detectors. Appl Radiat Isot 2017; 125:163-168. [PMID: 28453976 DOI: 10.1016/j.apradiso.2017.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Pulse shape discrimination is an important handle to improve sensitivity in low background experiments. A dedicated setup was built to investigate the response of high-purity germanium detectors to single Compton scattered events. Using properly collimated γ-ray sources, it is possible to select events with known interaction location. The aim is to correlate the position dependent signal shape with geometrical and electrical properties of the detector. We report on design and performance of the setup with a first look on data.
Collapse
Affiliation(s)
- K von Sturm
- Dipartimento di Fisica e Astronomia, Università di Padova, IT-35131 Padova, Italy; INFN Sezione di Padova, IT-35131 Padova, Italy.
| | - S Belogurov
- Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - R Brugnera
- Dipartimento di Fisica e Astronomia, Università di Padova, IT-35131 Padova, Italy; INFN Sezione di Padova, IT-35131 Padova, Italy
| | - A Garfagnini
- Dipartimento di Fisica e Astronomia, Università di Padova, IT-35131 Padova, Italy; INFN Sezione di Padova, IT-35131 Padova, Italy
| | - I Lippi
- INFN Sezione di Padova, IT-35131 Padova, Italy
| | - L Modenese
- INFN Sezione di Padova, IT-35131 Padova, Italy
| | - D Rosso
- INFN Laboratori Nazionali di Legnaro, IT-35020 Padova, Italy
| | - M Turcato
- INFN Sezione di Padova, IT-35131 Padova, Italy
| |
Collapse
|
24
|
De Romeri V, Herrero M, Marcano X, Scarcella F. Lepton flavor violating
Z
decays: A promising window to low scale seesaw neutrinos. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.95.075028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Background-free search for neutrinoless double-β decay of 76Ge with GERDA. Nature 2017; 544:47-52. [DOI: 10.1038/nature21717] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/19/2017] [Indexed: 11/08/2022]
|
26
|
Engel J, Menéndez J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:046301. [PMID: 28140335 DOI: 10.1088/1361-6633/aa5bc5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.
Collapse
Affiliation(s)
- Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, United States of America
| | | |
Collapse
|
27
|
Zuzel G, Pelczar K, Wójcik M. Studies of surface and bulk 210Po in metals using an ultra-low background large surface alpha spectrometer. Appl Radiat Isot 2017; 126:165-167. [PMID: 28161104 DOI: 10.1016/j.apradiso.2017.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 11/17/2022]
Abstract
First measurements of natural surface and bulk 210Po specific activities for metals are reported. If covered with protective foils, the surfaces did not show indications of 210Po and the obtained upper limits are in the range of single mBqm-2. Weak bulk activities, in the range of 50 - 280mBqkg-1, were registered for Stainless Steel and Copper, while significant amounts of 210Po, ∼1.5Bqkg-1, were detected in Titanium. One special Teflon sample was investigated with respect to its bulk 210Po.
Collapse
Affiliation(s)
- G Zuzel
- M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland.
| | - K Pelczar
- M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland
| | - M Wójcik
- M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
28
|
Tornow W, Bhike M, Finch S, Krishichayan. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββsearches. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714609013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Alekhin S, Altmannshofer W, Asaka T, Batell B, Bezrukov F, Bondarenko K, Boyarsky A, Choi KY, Corral C, Craig N, Curtin D, Davidson S, de Gouvêa A, Dell'Oro S, deNiverville P, Bhupal Dev PS, Dreiner H, Drewes M, Eijima S, Essig R, Fradette A, Garbrecht B, Gavela B, Giudice GF, Goodsell MD, Gorbunov D, Gori S, Grojean C, Guffanti A, Hambye T, Hansen SH, Helo JC, Hernandez P, Ibarra A, Ivashko A, Izaguirre E, Jaeckel J, Jeong YS, Kahlhoefer F, Kahn Y, Katz A, Kim CS, Kovalenko S, Krnjaic G, Lyubovitskij VE, Marcocci S, Mccullough M, McKeen D, Mitselmakher G, Moch SO, Mohapatra RN, Morrissey DE, Ovchynnikov M, Paschos E, Pilaftsis A, Pospelov M, Reno MH, Ringwald A, Ritz A, Roszkowski L, Rubakov V, Ruchayskiy O, Schienbein I, Schmeier D, Schmidt-Hoberg K, Schwaller P, Senjanovic G, Seto O, Shaposhnikov M, Shchutska L, Shelton J, Shrock R, Shuve B, Spannowsky M, Spray A, Staub F, Stolarski D, Strassler M, Tello V, Tramontano F, Tripathi A, Tulin S, Vissani F, Winkler MW, Zurek KM. A facility to search for hidden particles at the CERN SPS: the SHiP physics case. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:124201. [PMID: 27775925 DOI: 10.1088/0034-4885/79/12/124201] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Collapse
Affiliation(s)
- Sergey Alekhin
- Deutsches Elektronensynchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany. Institute for High Energy Physics, 142281 Protvino, Moscow region, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Gando A, Gando Y, Hachiya T, Hayashi A, Hayashida S, Ikeda H, Inoue K, Ishidoshiro K, Karino Y, Koga M, Matsuda S, Mitsui T, Nakamura K, Obara S, Oura T, Ozaki H, Shimizu I, Shirahata Y, Shirai J, Suzuki A, Takai T, Tamae K, Teraoka Y, Ueshima K, Watanabe H, Kozlov A, Takemoto Y, Yoshida S, Fushimi K, Banks TI, Berger BE, Fujikawa BK, O'Donnell T, Winslow LA, Efremenko Y, Karwowski HJ, Markoff DM, Tornow W, Detwiler JA, Enomoto S, Decowski MP. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. PHYSICAL REVIEW LETTERS 2016; 117:082503. [PMID: 27588852 DOI: 10.1103/physrevlett.117.082503] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 06/06/2023]
Abstract
We present an improved search for neutrinoless double-beta (0νββ) decay of ^{136}Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the ^{110m}Ag contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T_{1/2}^{0ν}>1.07×10^{26} yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.
Collapse
Affiliation(s)
- A Gando
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Gando
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Hachiya
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - A Hayashi
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - S Hayashida
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Ikeda
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Inoue
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - K Ishidoshiro
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Karino
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - M Koga
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - S Matsuda
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Mitsui
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Nakamura
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - S Obara
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Oura
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Ozaki
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - I Shimizu
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Shirahata
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - J Shirai
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - A Suzuki
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Takai
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Tamae
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Teraoka
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Ueshima
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Watanabe
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - A Kozlov
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - Y Takemoto
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - S Yoshida
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - K Fushimi
- Faculty of Integrated Arts and Science, University of Tokushima, Tokushima 770-8502, Japan
| | - T I Banks
- Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B E Berger
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B K Fujikawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T O'Donnell
- Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L A Winslow
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Efremenko
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - H J Karwowski
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - D M Markoff
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - W Tornow
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J A Detwiler
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
| | - S Enomoto
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
| | - M P Decowski
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Nikhef and the University of Amsterdam, Science Park, Amsterdam 1098XG, The Netherlands
| |
Collapse
|
32
|
|
33
|
Iwata Y, Shimizu N, Otsuka T, Utsuno Y, Menéndez J, Honma M, Abe T. Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of ^{48}Ca. PHYSICAL REVIEW LETTERS 2016; 116:112502. [PMID: 27035297 DOI: 10.1103/physrevlett.116.112502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 06/05/2023]
Abstract
We present the nuclear matrix element for the neutrinoless double-beta decay of ^{48}Ca based on large-scale shell-model calculations including two harmonic oscillator shells (sd and pf shells). The excitation spectra of ^{48}Ca and ^{48}Ti, and the two-neutrino double-beta decay of ^{48}Ca are reproduced in good agreement to the experimental data. We find that the neutrinoless double-beta decay nuclear matrix element is enhanced by about 30% compared to pf-shell calculations. This reduces the decay lifetime by almost a factor of 2. The matrix-element increase is mostly due to pairing correlations associated with cross-shell sd-pf excitations. We also investigate possible implications for heavier neutrinoless double-beta decay candidates.
Collapse
Affiliation(s)
- Y Iwata
- Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
| | - N Shimizu
- Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
| | - T Otsuka
- Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
- Department of Physics, The University of Tokyo, 113-0033 Tokyo, Japan
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Y Utsuno
- Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, 319-1195 Ibaraki, Japan
| | - J Menéndez
- Department of Physics, The University of Tokyo, 113-0033 Tokyo, Japan
| | - M Honma
- Center for Mathematical Sciences, University of Aizu, 965-8580 Fukushima, Japan
| | - T Abe
- Department of Physics, The University of Tokyo, 113-0033 Tokyo, Japan
| |
Collapse
|
34
|
Awasthi RL, Dev PB, Mitra M. Implications of the diboson excess for neutrinoless double beta decay and lepton flavor violation in TeV scale left-right symmetric model. Int J Clin Exp Med 2016. [DOI: 10.1103/physrevd.93.011701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Kalita R, Borah D. Constraining a type I seesaw model withA4flavor symmetry from neutrino data and leptogenesis. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.92.055012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Alfonso K, Artusa DR, Avignone FT, Azzolini O, Balata M, Banks TI, Bari G, Beeman JW, Bellini F, Bersani A, Biassoni M, Brofferio C, Bucci C, Caminata A, Canonica L, Cao XG, Capelli S, Cappelli L, Carbone L, Cardani L, Casali N, Cassina L, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, Cushman JS, Dafinei I, Dally A, Dell'Oro S, Deninno MM, Di Domizio S, Di Vacri ML, Drobizhev A, Ejzak L, Fang DQ, Faverzani M, Fernandes G, Ferri E, Ferroni F, Fiorini E, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Haller EE, Han K, Hansen E, Heeger KM, Hennings-Yeomans R, Hickerson KP, Huang HZ, Kadel R, Keppel G, Kolomensky YG, Lim KE, Liu X, Ma YG, Maino M, Martinez M, Maruyama RH, Mei Y, Moggi N, Morganti S, Nisi S, Nones C, Norman EB, Nucciotti A, O'Donnell T, Orio F, Orlandi D, Ouellet JL, Pagliarone CE, Pallavicini M, Palmieri V, Pattavina L, Pavan M, Pedretti M, Pessina G, Pettinacci V, Piperno G, Pirro S, Pozzi S, Previtali E, Rosenfeld C, Rusconi C, Sala E, Sangiorgio S, Santone D, Scielzo ND, Sisti M, Smith AR, Taffarello L, et alAlfonso K, Artusa DR, Avignone FT, Azzolini O, Balata M, Banks TI, Bari G, Beeman JW, Bellini F, Bersani A, Biassoni M, Brofferio C, Bucci C, Caminata A, Canonica L, Cao XG, Capelli S, Cappelli L, Carbone L, Cardani L, Casali N, Cassina L, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, Cushman JS, Dafinei I, Dally A, Dell'Oro S, Deninno MM, Di Domizio S, Di Vacri ML, Drobizhev A, Ejzak L, Fang DQ, Faverzani M, Fernandes G, Ferri E, Ferroni F, Fiorini E, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Haller EE, Han K, Hansen E, Heeger KM, Hennings-Yeomans R, Hickerson KP, Huang HZ, Kadel R, Keppel G, Kolomensky YG, Lim KE, Liu X, Ma YG, Maino M, Martinez M, Maruyama RH, Mei Y, Moggi N, Morganti S, Nisi S, Nones C, Norman EB, Nucciotti A, O'Donnell T, Orio F, Orlandi D, Ouellet JL, Pagliarone CE, Pallavicini M, Palmieri V, Pattavina L, Pavan M, Pedretti M, Pessina G, Pettinacci V, Piperno G, Pirro S, Pozzi S, Previtali E, Rosenfeld C, Rusconi C, Sala E, Sangiorgio S, Santone D, Scielzo ND, Sisti M, Smith AR, Taffarello L, Tenconi M, Terranova F, Tomei C, Trentalange S, Ventura G, Vignati M, Wagaarachchi SL, Wang BS, Wang HW, Wielgus L, Wilson J, Winslow LA, Wise T, Zanotti L, Zarra C, Zhang GQ, Zhu BX, Zucchelli S. Search for Neutrinoless Double-Beta Decay of (130)Te with CUORE-0. PHYSICAL REVIEW LETTERS 2015; 115:102502. [PMID: 26382673 DOI: 10.1103/physrevlett.115.102502] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 06/05/2023]
Abstract
We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of (130)Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV FWHM and 0.058±0.004(stat)±0.002(syst)counts/(keV kg yr), respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2.9×10(24) yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of (130)Te and place a Bayesian lower bound on the decay half-life, T(1/2)(0ν)>2.7×10(24) yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of (130)Te from the Cuoricino experiment we obtain T(1/2)(0ν)>4.0×10(24) yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, m(ββ)<270-760 meV.
Collapse
Affiliation(s)
- K Alfonso
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - D R Artusa
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - F T Avignone
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - O Azzolini
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - M Balata
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - T I Banks
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - G Bari
- INFN-Sezione di Bologna, Bologna I-40127, Italy
| | - J W Beeman
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - F Bellini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - A Bersani
- INFN-Sezione di Genova, Genova I-16146, Italy
| | - M Biassoni
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - C Brofferio
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - C Bucci
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - A Caminata
- INFN-Sezione di Genova, Genova I-16146, Italy
| | - L Canonica
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - X G Cao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - S Capelli
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - L Cappelli
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043, Italy
| | - L Carbone
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - L Cardani
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - N Casali
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - L Cassina
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - D Chiesa
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - N Chott
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - M Clemenza
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - S Copello
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - C Cosmelli
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - O Cremonesi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - R J Creswick
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - J S Cushman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - I Dafinei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - A Dally
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S Dell'Oro
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
- INFN-Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - M M Deninno
- INFN-Sezione di Bologna, Bologna I-40127, Italy
| | - S Di Domizio
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - M L Di Vacri
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, L'Aquila I-67100, Italy
| | - A Drobizhev
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Ejzak
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - D Q Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - M Faverzani
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - G Fernandes
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - E Ferri
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - F Ferroni
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - E Fiorini
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - S J Freedman
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B K Fujikawa
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Giachero
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - L Gironi
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - A Giuliani
- Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), 91405 Orsay Campus, Orsay, France
| | - P Gorla
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - C Gotti
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - T D Gutierrez
- Physics Department, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | - E E Haller
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - K Han
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - E Hansen
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K M Heeger
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - R Hennings-Yeomans
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - K P Hickerson
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - H Z Huang
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - R Kadel
- Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - G Keppel
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - Yu G Kolomensky
- Department of Physics, University of California, Berkeley, California 94720, USA
- Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - K E Lim
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - X Liu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Y G Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - M Maino
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - M Martinez
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - R H Maruyama
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Y Mei
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Moggi
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Bologna I-47921, Italy
| | - S Morganti
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S Nisi
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - C Nones
- CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, France
| | - E B Norman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - A Nucciotti
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - T O'Donnell
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - F Orio
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - D Orlandi
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - J L Ouellet
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C E Pagliarone
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043, Italy
| | - M Pallavicini
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - V Palmieri
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - L Pattavina
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - M Pavan
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - M Pedretti
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G Pessina
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | | | - G Piperno
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S Pirro
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - S Pozzi
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - E Previtali
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - C Rosenfeld
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - C Rusconi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - E Sala
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - S Sangiorgio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Santone
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, L'Aquila I-67100, Italy
| | - N D Scielzo
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Sisti
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - A R Smith
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - M Tenconi
- Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), 91405 Orsay Campus, Orsay, France
| | - F Terranova
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - C Tomei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S Trentalange
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - G Ventura
- Dipartimento di Fisica, Università di Firenze, Firenze I-50125, Italy
- INFN-Sezione di Firenze, Firenze I-50125, Italy
| | - M Vignati
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S L Wagaarachchi
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B S Wang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - H W Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - L Wielgus
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J Wilson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - L A Winslow
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Wise
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - L Zanotti
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - C Zarra
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010, Italy
| | - G Q Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - B X Zhu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - S Zucchelli
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Fisica e Astronomia, Alma Mater Studiorum-Università di Bologna, Bologna I-40127, Italy
| |
Collapse
|
37
|
Maiezza A, Nemevšek M, Nesti F. Lepton Number Violation in Higgs Decay at LHC. PHYSICAL REVIEW LETTERS 2015; 115:081802. [PMID: 26340181 DOI: 10.1103/physrevlett.115.081802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 06/05/2023]
Abstract
We show that within the left-right symmetric model, lepton number violating decays of the Higgs boson can be discovered at the LHC. The process is due to the mixing of the Higgs boson with the triplet that breaks parity. As a result, the Higgs boson can act as a gateway to the origin of the heavy Majorana neutrino mass. To assess the LHC reach, a detailed collider study of the same-sign dileptons plus jets channel is provided. This process is complementary to the existing nuclear and collider searches for lepton number violation and can probe the scale of parity restoration even beyond other direct searches.
Collapse
Affiliation(s)
- Alessio Maiezza
- IFIC, Universitat de València-CSIC, Apartamento Correus 22085, E-46071 València, Spain
| | - Miha Nemevšek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Fabrizio Nesti
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
|
39
|
Moggi N, Artusa DR, Avignone FT, Azzolini O, Balata M, Banks TI, Bari G, Beeman J, Bellini F, Bersani A, Biassoni M, Brofferio C, Bucci C, Cai XZ, Camacho A, Caminata A, Canonica L, Cao XG, Capelli S, Cappelli L, Carbone L, Cardani L, Casali N, Cassina L, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, Cushman JS, Dafinei I, Dally A, Datskov V, Dell’oro S, Deninno MM, Di Domizio S, Di Vacri ML, Drobizhev A, Ejzak L, Fang DQ, Farach HA, Faverzani M, Fernandes G, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Haller EE, Han K, Heeger KM, Hennings-Yeomans R, Hickerson KP, Huang HZ, Kadel R, Keppel G, Kolomensky YG, Li YL, Ligi C, Lim KE, Liu X, Ma YG, Maiano C, Maino M, Martinez M, Maruyama RH, Mei Y, Morganti S, Napolitano T, Nisi S, Nones C, Norman EB, Nucciotti A, O’Donnell T, Orio F, Orlandi D, Ouellet JL, Pagliarone CE, Pallavicini M, Palmieri V, Pattavina L, Pavan M, Pessina G, Pettinacci V, Piperno G, Pira C, Pirro S, Pozzi S, Previtali E, Rosenfeld C, Rusconi C, et alMoggi N, Artusa DR, Avignone FT, Azzolini O, Balata M, Banks TI, Bari G, Beeman J, Bellini F, Bersani A, Biassoni M, Brofferio C, Bucci C, Cai XZ, Camacho A, Caminata A, Canonica L, Cao XG, Capelli S, Cappelli L, Carbone L, Cardani L, Casali N, Cassina L, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, Cushman JS, Dafinei I, Dally A, Datskov V, Dell’oro S, Deninno MM, Di Domizio S, Di Vacri ML, Drobizhev A, Ejzak L, Fang DQ, Farach HA, Faverzani M, Fernandes G, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Haller EE, Han K, Heeger KM, Hennings-Yeomans R, Hickerson KP, Huang HZ, Kadel R, Keppel G, Kolomensky YG, Li YL, Ligi C, Lim KE, Liu X, Ma YG, Maiano C, Maino M, Martinez M, Maruyama RH, Mei Y, Morganti S, Napolitano T, Nisi S, Nones C, Norman EB, Nucciotti A, O’Donnell T, Orio F, Orlandi D, Ouellet JL, Pagliarone CE, Pallavicini M, Palmieri V, Pattavina L, Pavan M, Pessina G, Pettinacci V, Piperno G, Pira C, Pirro S, Pozzi S, Previtali E, Rosenfeld C, Rusconi C, Sala E, Sangiorgio S, Santone D, Scielzo ND, Sisti M, Smith AR, Taffarello L, Tenconi M, Terranova F, Tian WD, Tomei C, Trentalange S, Ventura G, Vignati M, Wang BS, Wang HW, Wielgus L, Wilson J, Winslow LA, Wise T, Woodcraft A, Zanotti L, Zarra C, Zhang GQ, Zhu BX, Zucchelli S. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159003004] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Allanach B, Biswas S, Mondal S, Mitra M. Explaining a CMSeejjexcess withR-parity violating supersymmetry and implications for neutrinoless double beta decay. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.91.011702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Babu K, Mohapatra RN. Determining Majorana nature of neutrino from nucleon decays andn−n¯oscillations. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.91.013008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Allanach B, Biswas S, Mondal S, Mitra M. Resonant slepton production yields CMSeejjandepTjjexcesses. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.91.015011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Crider BP, Peters EE, Ross TJ, McEllistrem MT, Prados-Estévez FM, Allmond JM, Vanhoy JR, Yates SW. Inelastic neutron scattering studies of 76Ge and 76Se: relevance to elevance to neutrinoless double-β decay. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159305001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Palioselitis D. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159504049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Tornow W, Bhike M. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159303001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Renormalization group running of neutrino parameters. Nat Commun 2014; 5:5153. [DOI: 10.1038/ncomms6153] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/04/2014] [Indexed: 11/08/2022] Open
|
47
|
Meroni A, Peinado E. The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana, and sterile neutrinos. Int J Clin Exp Med 2014. [DOI: 10.1103/physrevd.90.053002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
|
49
|
|
50
|
Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 2014; 510:229-34. [DOI: 10.1038/nature13432] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/28/2014] [Indexed: 11/09/2022]
|