1
|
Bartolomei H, Frigerio E, Ruelle M, Rebora G, Jin Y, Gennser U, Cavanna A, Baudin E, Berroir JM, Safi I, Degiovanni P, Ménard GC, Fève G. Time-resolved sensing of electromagnetic fields with single-electron interferometry. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01888-2. [PMID: 40097651 DOI: 10.1038/s41565-025-01888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Characterizing quantum states of the electromagnetic field at microwave frequencies requires fast and sensitive detectors that can simultaneously probe the field's time-dependent amplitude and its quantum fluctuations. So far, this has been achieved by using either homodyne detection or fast digitizers. Both methods rely on the extraction of microwave radiation through an amplification chain towards the detector placed at room temperature, thereby limiting the time resolution to the ~10-GHz bandwidth of the measurement chain. Additionally, the coupling of high-impedance samples to the 50-Ω measurement chain is very weak, setting strong limitations on the detection sensitivity. In this work, we demonstrate an on-chip quantum sensor that exploits the phase of a single-electron wavefunction, measured in an electronic Fabry-Pérot interferometer, to detect the amplitude of a classical time-dependent electric field. The interferometer is implemented in a GaAs/AlGaAs quantum Hall conductor. The time resolution, limited by the temporal width of the electronic wavepacket, is ~35 ps. The interferometry technique provides a voltage resolution of ~50 μV, corresponding to a few microwave photons. Importantly, our detector measures both phase and contrast of the interference pattern. The latter opens the way to the detection of non-classical electromagnetic fields, such as squeezed or Fock states.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - E Frigerio
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - M Ruelle
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - G Rebora
- Univ. Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - E Baudin
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - I Safi
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France
| | - P Degiovanni
- Univ. Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, France
| | - G C Ménard
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
| | - G Fève
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Vivek G, Mondal D, Sinha S. Nonequilibrium dynamics of the Jaynes-Cummings dimer. Phys Rev E 2023; 108:054116. [PMID: 38115501 DOI: 10.1103/physreve.108.054116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023]
Abstract
We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping phenomenon, which results in photon population imbalance between the two cavities. We also study the dynamics quantum mechanically to identify characteristic features of different steady states and to explore fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entanglement of spin qubits. For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments, which can have applications in quantum information processing and quantum technologies.
Collapse
Affiliation(s)
- G Vivek
- Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia-741246, India
| | - Debabrata Mondal
- Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia-741246, India
| | - S Sinha
- Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia-741246, India
| |
Collapse
|
3
|
Bartolomei H, Bisognin R, Kamata H, Berroir JM, Bocquillon E, Ménard G, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Mora C, Fève G. Observation of Edge Magnetoplasmon Squeezing in a Quantum Hall Conductor. PHYSICAL REVIEW LETTERS 2023; 130:106201. [PMID: 36962050 DOI: 10.1103/physrevlett.130.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Squeezing of the quadratures of the electromagnetic field has been extensively studied in optics and microwaves. However, previous works focused on the generation of squeezed states in a low impedance (Z_{0}≈50 Ω) environment. We report here on the demonstration of the squeezing of bosonic edge magnetoplasmon modes in a quantum Hall conductor whose characteristic impedance is set by the quantum of resistance (R_{K}≈25 kΩ), offering the possibility of an enhanced coupling to low-dimensional quantum conductors. By applying a combination of dc and ac drives to a quantum point contact, we demonstrate squeezing and observe a noise reduction 18% below the vacuum fluctuations. This level of squeezing can be improved by using more complex conductors, such as ac driven quantum dots or mesoscopic capacitors.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - R Bisognin
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - H Kamata
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln
| | - G Ménard
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - B Plaçais
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - P Degiovanni
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - C Mora
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - G Fève
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
4
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Westig M, Kubala B, Parlavecchio O, Mukharsky Y, Altimiras C, Joyez P, Vion D, Roche P, Esteve D, Hofheinz M, Trif M, Simon P, Ankerhold J, Portier F. Emission of Nonclassical Radiation by Inelastic Cooper Pair Tunneling. PHYSICAL REVIEW LETTERS 2017; 119:137001. [PMID: 29341699 DOI: 10.1103/physrevlett.119.137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and intercorrelations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This nonclassical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.
Collapse
Affiliation(s)
- M Westig
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - B Kubala
- Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
| | - O Parlavecchio
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Y Mukharsky
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - C Altimiras
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - P Joyez
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - D Vion
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - P Roche
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - D Esteve
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - M Hofheinz
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - M Trif
- Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France
| | - P Simon
- Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France
| | - J Ankerhold
- Institute for Complex Quantum Systems and IQST, University of Ulm, 89069 Ulm, Germany
| | - F Portier
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Grimsmo AL, Qassemi F, Reulet B, Blais A. Quantum Optics Theory of Electronic Noise in Coherent Conductors. PHYSICAL REVIEW LETTERS 2016; 116:043602. [PMID: 26871330 DOI: 10.1103/physrevlett.116.043602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 06/05/2023]
Abstract
We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)].
Collapse
Affiliation(s)
- Arne L Grimsmo
- Départment de Physique, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Farzad Qassemi
- Départment de Physique, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bertrand Reulet
- Départment de Physique, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alexandre Blais
- Départment de Physique, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
7
|
Forgues JC, Lupien C, Reulet B. Experimental violation of bell-like inequalities by electronic shot noise. PHYSICAL REVIEW LETTERS 2015; 114:130403. [PMID: 25884119 DOI: 10.1103/physrevlett.114.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 06/04/2023]
Abstract
We report measurements of the correlations between electromagnetic field quadratures at two frequencies f1=7 GHz and f1=7.5 GHz of the radiation emitted by a tunnel junction placed at very low temperature and excited at frequency f1+f2. We demonstrate the existence of two-mode squeezing and violation of a Bell-like inequality, thereby proving the existence of entanglement in the quantum shot noise radiated by the tunnel junction.
Collapse
Affiliation(s)
- Jean-Charles Forgues
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Christian Lupien
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Bertrand Reulet
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
8
|
Souquet JR, Woolley MJ, Gabelli J, Simon P, Clerk AA. Photon-assisted tunnelling with nonclassical light. Nat Commun 2014; 5:5562. [PMID: 25424422 PMCID: PMC4263132 DOI: 10.1038/ncomms6562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/14/2014] [Indexed: 11/23/2022] Open
Abstract
Among the most exciting recent advances in the field of superconducting quantum circuits is the ability to coherently couple microwave photons in low-loss cavities to quantum electronic conductors. These hybrid quantum systems hold great promise for quantum information-processing applications; even more strikingly, they enable exploration of new physical regimes. Here we study theoretically the new physics emerging when a quantum electronic conductor is exposed to nonclassical microwaves (for example, squeezed states, Fock states). We study this interplay in the experimentally relevant situation where a superconducting microwave cavity is coupled to a conductor in the tunnelling regime. We find that the conductor acts as a nontrivial probe of the microwave state: the emission and absorption of photons by the conductor is characterized by a nonpositive definite quasi-probability distribution, which is related to the Glauber–Sudarshan P-function of quantum optics. These negative quasi-probabilities have a direct influence on the conductance of the conductor. Coherently coupling microwave photons to quantum electronic conductors could provide a useful platform for quantum information processing. Souquet et al. now theoretically demonstrate that such systems can also act as sensitive probes of the quantum properties of non-classical microwave radiation.
Collapse
Affiliation(s)
- J-R Souquet
- 1] Laboratoire de Physique des Solides, Université Paris-Sud, Orsay 91405, France [2] Department of Physics, McGill University, Montréal, Quebec, Canada
| | - M J Woolley
- School of Engineering and Information Technology, University of New South Wales, ADFA, Canberra, Australian Capital Territory 2600, Australia
| | - J Gabelli
- Laboratoire de Physique des Solides, Université Paris-Sud, Orsay 91405, France
| | - P Simon
- Laboratoire de Physique des Solides, Université Paris-Sud, Orsay 91405, France
| | - A A Clerk
- Department of Physics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Forgues JC, Lupien C, Reulet B. Emission of microwave photon pairs by a tunnel junction. PHYSICAL REVIEW LETTERS 2014; 113:043602. [PMID: 25105619 DOI: 10.1103/physrevlett.113.043602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 06/03/2023]
Abstract
We report the observation of photon pairs in the photoassisted shot noise of a tunnel junction in the quantum regime at very high frequency and very low temperature. We have measured the fluctuations of the noise power generated by the junction at two different frequencies, f(1) = 4.4 and f(2) = 7.2 GHz, while driving the junction with a microwave excitation of frequency f(0) = f(1) + f(2). We observe clear correlations between the fluctuations of the two noise powers even when the mean photon number per measurement is much smaller than one. This is strong evidence for photons being emitted in pairs. We also demonstrate that the electromagnetic field generated by the junction exhibits two-mode amplitude squeezing, a proof of its nonclassicality. The data agree very well with predictions based on the fourth cumulant of the current fluctuations generated by the junction.
Collapse
Affiliation(s)
- Jean-Charles Forgues
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Christian Lupien
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Bertrand Reulet
- Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|