1
|
Bianca G, Trovatello C, Zilli A, Zappia MI, Bellani S, Curreli N, Conticello I, Buha J, Piccinni M, Ghini M, Celebrano M, Finazzi M, Kriegel I, Antonatos N, Sofer Z, Bonaccorso F. Liquid-Phase Exfoliation of Bismuth Telluride Iodide (BiTeI): Structural and Optical Properties of Single-/Few-Layer Flakes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34963-34974. [PMID: 35876692 PMCID: PMC9354013 DOI: 10.1021/acsami.2c07704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).
Collapse
Affiliation(s)
- Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Trovatello
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Attilio Zilli
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marilena Isabella Zappia
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C Rende, Cosenza 87036, Italy
| | | | - Nicola Curreli
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Irene Conticello
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| | - Joka Buha
- Nanochemistry
Department, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Marco Piccinni
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Michele Ghini
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Michele Celebrano
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marco Finazzi
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ilka Kriegel
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Nikolas Antonatos
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| |
Collapse
|
2
|
Chen ZG, Wang L, Song Y, Lu X, Luo H, Zhang C, Dai P, Yin Z, Haule K, Kotliar G. Two-Dimensional Massless Dirac Fermions in Antiferromagnetic AFe_{2}As_{2} (A=Ba,Sr). PHYSICAL REVIEW LETTERS 2017; 119:096401. [PMID: 28949552 DOI: 10.1103/physrevlett.119.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 06/07/2023]
Abstract
We report infrared studies of AFe_{2}As_{2} (A=Ba, Sr), two representative parent compounds of iron-arsenide superconductors, at magnetic fields (B) up to 17.5 T. Optical transitions between Landau levels (LLs) were observed in the antiferromagnetic states of these two parent compounds. Our observation of a sqrt[B] dependence of the LL transition energies, the zero-energy intercepts at B=0 T under the linear extrapolations of the transition energies and the energy ratio (∼2.4) between the observed LL transitions, combined with the linear band dispersions in two-dimensional (2D) momentum space obtained by theoretical calculations, demonstrates the existence of massless Dirac fermions in the antiferromagnet BaFe_{2}As_{2}. More importantly, the observed dominance of the zeroth-LL-related absorption features and the calculated bands with extremely weak dispersions along the momentum direction k_{z} indicate that massless Dirac fermions in BaFe_{2}As_{2} are 2D. Furthermore, we find that the total substitution of the barium atoms in BaFe_{2}As_{2} by strontium atoms not only maintains 2D massless Dirac fermions in this system, but also enhances their Fermi velocity, which supports that the Dirac points in iron-arsenide parent compounds are topologically protected.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Luyang Wang
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Sate Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Song
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Xingye Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiqian Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenglin Zhang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Pengcheng Dai
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Zhiping Yin
- Center of Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Kristjan Haule
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- DMFT-MatDeLab Center, Upton, New York 11973, USA
| | - Gabriel Kotliar
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- DMFT-MatDeLab Center, Upton, New York 11973, USA
| |
Collapse
|
3
|
Bahramy MS, Ogawa N. Bulk Rashba Semiconductors and Related Quantum Phenomena. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605911. [PMID: 28370556 DOI: 10.1002/adma.201605911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/15/2017] [Indexed: 06/07/2023]
Abstract
Bithmuth tellurohalides BiTeX (X = Cl, Br and I) are model examples of bulk Rashba semiconductors, exhibiting a giant Rashba-type spin splitting among their both valence and conduction bands. Extensive spectroscopic and transport experiments combined with the state-of-the-art first-principles calculations have revealed many unique quantum phenomena emerging from the bulk Rashba effect in these systems. The novel features such as the exotic inter- and intra-band optical transitions, enhanced magneto-optical response, divergent orbital dia-/para-magnetic susceptibility and helical spin textures with a nontrivial Berry's phase in the momentum space are among the salient discoveries, all arising from this effect. Also, it is theoretically proposed and indications have been experimentally reported that bulk Rashba semiconductors such as BiTeI have the capability of becoming a topological insulator under the application of a hydrostatic pressure. Here, we overview these studies and show that BiTeX are an ideal platform to explore the next aspects of quantum matter, which could ultimately be utilized to create spintronic devices with novel functionalities.
Collapse
Affiliation(s)
- Mohammad Saeed Bahramy
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
| | - Naoki Ogawa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Orbital angular momentum analysis for giant spin splitting in solids and nanostructures. Sci Rep 2017; 7:2024. [PMID: 28515444 PMCID: PMC5435738 DOI: 10.1038/s41598-017-02032-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/06/2017] [Indexed: 11/16/2022] Open
Abstract
Giant spin splitting (GSS) of electronic bands, which is several orders of magnitude greater than the standard Rashba effect has been observed in various systems including noble-metal surfaces and thin films of transition-metal dichalcogenides. Previous studies reported that orbital angular momentum (OAM) is not quenched in some GSS materials and that the atomic spin-orbit interaction (SOI) generates spin splitting in some solid states via the interorbital hopping. Although the unquenched OAM may be closely related to the interorbital hopping, their relationship is hardly studied in the aspect of using the unquenched OAM as a control parameter of GSS. Here, we analyze OAM in GSS materials by using the interorbital-hopping mechanism and first-principles calculations. We report that the interatomic hopping between different-parity orbitals, which is generated by specific broken mirror symmetry, produces k-dependent OAM, resulting in valley-dependent GSS in WSe2 monolayer, Rashba-type GSS in Au (111) surface, and Dresselhaus-type GSS in bulk HgTe. We also demonstrate systematic control of OAM by pressure, external fields, and substrates, thereby controlling the spin splitting, and discuss the temperature dependence of OAM. Our results provide a simplified picture for systematic design and control of GSS materials.
Collapse
|
5
|
Shuvaev A, Dziom V, Kvon ZD, Mikhailov NN, Pimenov A. Universal Faraday Rotation in HgTe Wells with Critical Thickness. PHYSICAL REVIEW LETTERS 2016; 117:117401. [PMID: 27661718 DOI: 10.1103/physrevlett.117.117401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 06/06/2023]
Abstract
The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.
Collapse
Affiliation(s)
- A Shuvaev
- Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - V Dziom
- Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Z D Kvon
- Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Semiconductor Physics, Novosibirsk 630090, Russia
| | - N N Mikhailov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Semiconductor Physics, Novosibirsk 630090, Russia
| | - A Pimenov
- Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| |
Collapse
|
6
|
Rauch T, Flieger M, Henk J, Mertig I, Ernst A. Dual topological character of chalcogenides: theory for Bi2Te3. PHYSICAL REVIEW LETTERS 2014; 112:016802. [PMID: 24483917 DOI: 10.1103/physrevlett.112.016802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 06/03/2023]
Abstract
A topological insulator is realized via band inversions driven by the spin-orbit interaction. In the case of Z2 topological phases, the number of band inversions is odd and time-reversal invariance is a further unalterable ingredient. For topological crystalline insulators, the number of band inversions may be even but mirror symmetry is required. Here, we prove that the chalcogenide Bi2Te3 is a dual topological insulator: it is simultaneously in a Z2 topological phase with Z2 invariants (ν0;ν1ν2ν3) = (1;0 0 0) and in a topological crystalline phase with mirror Chern number -1. In our theoretical investigation we show in addition that the Z2 phase can be broken by magnetism while keeping the topological crystalline phase. As a consequence, the Dirac state at the (111) surface is shifted off the time-reversal invariant momentum Γ; being protected by mirror symmetry, there is no band gap opening. Our observations provide theoretical groundwork for opening the research on magnetic control of topological phases in quantum devices.
Collapse
Affiliation(s)
- Tomáš Rauch
- Department of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Markus Flieger
- Department of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jürgen Henk
- Department of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Ingrid Mertig
- Department of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany and Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| | - Arthur Ernst
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| |
Collapse
|