1
|
Lin YT, Liu S, Bhat B, Kuan KY, Zhou W, Cobos IJ, Kwon JSI, Akbulut MES. pH- and temperature-responsive supramolecular assemblies with highly adjustable viscoelasticity: a multi-stimuli binary system. SOFT MATTER 2023. [PMID: 37449660 DOI: 10.1039/d3sm00549f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Stimuli-responsive materials are increasingly needed for the development of smart electronic, mechanical, and biological devices and systems relying on switchable, tunable, and adaptable properties. Herein, we report a novel pH- and temperature-responsive binary supramolecular assembly involving a long-chain hydroxyamino amide (HAA) and an inorganic hydrotrope, boric acid, with highly tunable viscous and viscoelastic properties. The system under investigation demonstrates a high degree of control over its viscosity, with the capacity to achieve over four orders of magnitude of control through the concomitant manipulation of pH and temperature. In addition, the transformation from non-Maxwellian to Maxwellian fluid behavior could also be induced by changing the pH and temperature. Switchable rheological properties were ascribed to the morphological transformation between spherical vesicles, aggregated/fused spherical vesicles, and bicontinuous gyroid structures revealed by cryo-TEM studies. The observed transitions are attributed to the modulation of the head group spacing between HAA molecules under different pH conditions. Specifically, acidic conditions induce electrostatic repulsion between the protonated amino head groups, leading to an increased spacing. Conversely, under basic conditions, the HAA head group spacing is reduced due to the intercalation of tetrahydroxyborate, facilitated by hydrogen bonding.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Kai-Yuan Kuan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Ignacio Jose Cobos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Xie CZ, Chang SM, Mamontov E, Stingaciu LR, Chen YF. Uncoupling between the lipid membrane dynamics of differing hierarchical levels. Phys Rev E 2020; 101:012416. [PMID: 32069643 DOI: 10.1103/physreve.101.012416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/07/2022]
Abstract
Diverse biological functions of biomembranes are made possible by their rich dynamic behaviors across multiple scales. While the potential coupling between the dynamics of differing scales may underlie the machineries regulating the biomembrane-involving processes, the mechanism and even the existence of this coupling remain an open question, despite the latter being taken for granted. Via inelastic neutron scattering, we examined dynamics across multiple scales for the lipid membranes whose dynamic behaviors were perturbed by configurational changes at two membrane regions. Surprisingly, the dynamic behavior of individual lipid molecules and their collective motions were not always coupled. This suggests that the expected causal relation between the dynamics of the differing hierarchical levels does not exist and that an apparent coupling can emerge by manipulating certain membrane configurations. The findings provide insight on biomembrane modeling and how cells might individually or concertedly control the multiscale membrane dynamics to regulate their functions.
Collapse
Affiliation(s)
- Cheng-Zhi Xie
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shih-Min Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura R Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
3
|
Marcellini M, Nasedkin A, Zietz B, Petersson J, Vincent J, Palazzetti F, Malmerberg E, Kong Q, Wulff M, van der Spoel D, Neutze R, Davidsson J. Transient isomers in the photodissociation of bromoiodomethane. J Chem Phys 2018; 148:134307. [PMID: 29626862 DOI: 10.1063/1.5005595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Collapse
Affiliation(s)
- Moreno Marcellini
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Alexandr Nasedkin
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonas Petersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonathan Vincent
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Federico Palazzetti
- Universitá di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Qingyu Kong
- Argonne National Laboratory's, Xray Science Division, 9700 S Cass Ave., Argonne, Illinois 60439, USA
| | - Michael Wulff
- European Synchrotron Radiation Facility, B.P. 220, F-380 43 Grenoble Cedex, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| |
Collapse
|
4
|
Jaksch S, Holderer O, Gvaramia M, Ohl M, Monkenbusch M, Frielinghaus H. Nanoscale rheology at solid-complex fluid interfaces. Sci Rep 2017; 7:4417. [PMID: 28667252 PMCID: PMC5493686 DOI: 10.1038/s41598-017-04294-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Here we present an approach to measure dynamic membrane properties of phospholipid membranes close to an interface. As an example we show results of the membrane dynamics of a phospholipid membrane multilayer-stack on a solid substrate (silicon). On this sample we were able to measure local interaction and friction parameters using Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES), where an evanescent neutron wave probes the fluctuations close to a rigid interface. With this method it is possible to access length scales in the nano to micrometer region as well as energies in the μeV range. Using a new neutron resonator structure we achieved the required intensity gain for this experiment. During our investigations we found an excitation mode of the phospholipid membrane that has not been reported previously and only became visible using the new methodology. We speculate that the energy transported by that undulation can also serve to distribute energy over a larger area of the membrane, stabilizing it. This new methodology has the capability to probe the viscoelastic effects of biological membranes, becoming a new tool for tribology on the nanoscale and has allowed the observation of the hitherto invisible property of phospholipid membranes using neutrons.
Collapse
Affiliation(s)
- Sebastian Jaksch
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenberstraße 1, 85747, Garching, Germany.
| | - Olaf Holderer
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenberstraße 1, 85747, Garching, Germany
| | - Manuchar Gvaramia
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenberstraße 1, 85747, Garching, Germany
| | - Michael Ohl
- Forschungszentrum Jülich GmbH, JCNS at SNS-Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Michael Monkenbusch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz Zentrum, Lichtenberstraße 1, 85747, Garching, Germany
| |
Collapse
|
5
|
Marquardt D, Alsop RJ, Rheinstädter MC, Harroun TA. Neutron Scattering at the Intersection of Heart Health Science and Biophysics. J Cardiovasc Dev Dis 2015; 2:125-140. [PMID: 29371515 PMCID: PMC5753099 DOI: 10.3390/jcdd2020125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/25/2015] [Indexed: 01/04/2023] Open
Abstract
There is an urgent quest for improved heart health. Here, we review how neutron radiation can provide insight into the molecular basis of heart health. Lower cholesterol, a daily intake of aspirin and supplemental vitamin E are argued to all improve heart health. However, the mechanisms behind these common regimens, and others, are not entirely understood. It is not clear why a daily intake of aspirin can help some people with heart disease, and the benefits of vitamin E in the treatment of reperfusion injury have been heavily debated. The molecular impact of cholesterol in the body is still a hot topic. Neutron scattering experiments present a unique opportunity for biophysicists attempting to address these problems. We review some recently published studies that are advancing our understanding of how cholesterol, vitamin E and aspirin work at the molecular level, by studying the impact of these molecules on the cell membrane. These insights engage the broader health science community with new ways of thinking about these molecules.
Collapse
Affiliation(s)
- Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, University of Graz (NAWI Graz), mbox Graz 8010, Austria.
- BioTechMed-Graz, Graz 8010, Austria.
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Richard J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
- Canadian Neutron Beam Centre, Chalk River, ON K0J 1P0, Canada.
| | - Thad A Harroun
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
6
|
Jablin MS, Akabori K, Nagle JF. Experimental support for tilt-dependent theory of biomembrane mechanics. PHYSICAL REVIEW LETTERS 2014; 113:248102. [PMID: 25541806 DOI: 10.1103/physrevlett.113.248102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 06/04/2023]
Abstract
Recent simulations have indicated that the traditional model for topographical fluctuations in biomembranes should be enriched to include molecular tilt. Here we report the first experimental data supporting this enrichment. Utilizing a previously posited tilt-dependent model, a height-height correlation function was derived. The x-ray scattering from a liquid crystalline stack of oriented fluid phase lipid bilayers was calculated and compared with experiment. By fitting the measured scattering intensity, both the bending modulus K(c)=8.3±0.6×10⁻²⁰ J and the tilt modulus K(θ)=95±7 mN/m were determined for DOPC lipid bilayers at 30 °C.
Collapse
Affiliation(s)
- M S Jablin
- Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - K Akabori
- Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - J F Nagle
- Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
7
|
Reusch T, Osterhoff M, Agricola J, Salditt T. Pulse-resolved multi-photon X-ray detection at 31 MHz based on a quadrant avalanche photodiode. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:708-15. [PMID: 24971964 PMCID: PMC4073958 DOI: 10.1107/s1600577514006730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the synchrotron bunch repetition rate. By a novel multi-photon detection scheme, the exact number of X-ray photons within each X-ray pulse can be recorded. Commissioning experiments at beamlines P08 and P10 of the storage ring PETRA III, at DESY, Hamburg, Germany, have been used to validate the pulse-wise multi-photon counting scheme at bunch frequencies ≥ 31 MHz, enabling pulse-by-pulse readout during the PETRA III 240-bunch mode with single-photon detection capability. An X-ray flux of ≥ 3.7 × 10(9) photons s(-1) can be detected while still resolving individual photons at low count rates.
Collapse
Affiliation(s)
- Tobias Reusch
- Institute for X-ray Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-ray Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johannes Agricola
- Institute for X-ray Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|