2
|
Laureti S, Gerardino A, D'Acapito F, Peddis D, Varvaro G. The role of chemical and microstructural inhomogeneities on interface magnetism. NANOTECHNOLOGY 2021; 32:205701. [PMID: 33530067 DOI: 10.1088/1361-6528/abe260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of interfacing effects arising when different magnetic phases are in close contact has led to the discovery of novel physical properties and the development of innovative technological applications of nanostructured magnetic materials. Chemical and microstructural inhomogeneities at the interfacial region, driven by interdiffusion processes, chemical reactions and interface roughness may significantly affect the final properties of a material and, if suitably controlled, may represent an additional tool to finely tune the overall physical properties. The activity at the Nanostructured Magnetic Materials Laboratory (nM2-Lab) at CNR-ISM of Italy is aimed at designing and investigating nanoscale-engineered magnetic materials, where the overall magnetic properties are dominated by the interface exchange coupling. In this review, some examples of recent studies where the chemical and microstructural properties are critical in determining the overall magnetic properties in core/shell nanoparticles, nanocomposites and multilayer heterostructures are presented.
Collapse
Affiliation(s)
- S Laureti
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
| | - A Gerardino
- Istituto di Fotonica e Nanotecnologie, CNR, via Cineto Romano 42, I-00156, Italy
| | - F D'Acapito
- CNR-IOM-OGG c/o ESRF, LISA CRG, c/o ESRF BP220, F-38043 Grenoble, France
| | - D Peddis
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, nM2-Lab, Via Dodecaneso 31, Genova, I-16146, Italy
| | - G Varvaro
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
| |
Collapse
|
3
|
Ye X, Zhao J, Das H, Sheptyakov D, Yang J, Sakai Y, Hojo H, Liu Z, Zhou L, Cao L, Nishikubo T, Wakazaki S, Dong C, Wang X, Hu Z, Lin HJ, Chen CT, Sahle C, Efiminko A, Cao H, Calder S, Mibu K, Kenzelmann M, Tjeng LH, Yu R, Azuma M, Jin C, Long Y. Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO 3. Nat Commun 2021; 12:1917. [PMID: 33772004 PMCID: PMC7997894 DOI: 10.1038/s41467-021-22064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.
Collapse
Affiliation(s)
- Xubin Ye
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfa Zhao
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hena Das
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,grid.32197.3e0000 0001 2179 2105Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Denis Sheptyakov
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Junye Yang
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Yuki Sakai
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Hajime Hojo
- grid.177174.30000 0001 2242 4849Department of Advanced Materials and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Japan
| | - Zhehong Liu
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhou
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Cao
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Takumi Nishikubo
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Shogo Wakazaki
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Cheng Dong
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Wang
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Zhiwei Hu
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Hong-Ji Lin
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Chien-Te Chen
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Christoph Sahle
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | - Anna Efiminko
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | - Huibo Cao
- grid.135519.a0000 0004 0446 2659Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Stuart Calder
- grid.135519.a0000 0004 0446 2659Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Ko Mibu
- grid.47716.330000 0001 0656 7591Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Michel Kenzelmann
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Liu Hao Tjeng
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Runze Yu
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,grid.32197.3e0000 0001 2179 2105Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Masaki Azuma
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Changqing Jin
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,Songshan Lake Materials Laboratory, Dongguan, Guangdong China
| | - Youwen Long
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,Songshan Lake Materials Laboratory, Dongguan, Guangdong China
| |
Collapse
|
4
|
Ruff A, Loidl A, Krohns S. Multiferroic Hysteresis Loop. MATERIALS 2017; 10:ma10111318. [PMID: 29149034 PMCID: PMC5706265 DOI: 10.3390/ma10111318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
Abstract
Multiferroics, showing both ferroelectric and magnetic order, are promising candidates for future electronic devices. Especially, the fundamental understanding of ferroelectric switching is of key relevance for further improvements, which however is rarely reported in literature. On a prime example for a spin-driven multiferroic, LiCuVO4, we present an extensive study of the ferroelectric order and the switching behavior as functions of external electric and magnetic fields. From frequency-dependent polarization switching and using the Ishibashi-Orihara theory, we deduce the existence of ferroelectric domains and domain-walls. These have to be related to counterclockwise and clockwise spin-spirals leading to the formation of multiferroic domains. A novel measurement—multiferroic hysteresis loop—is established to analyze the electrical polarization simultaneously as a function of electrical and magnetic fields. This technique allows characterizing the complex coupling between ferroelectric and magnetic order in multiferroic LiCuVO4.
Collapse
Affiliation(s)
- Alexander Ruff
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.
| | - Stephan Krohns
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
6
|
Gilbert DA, Olamit J, Dumas RK, Kirby BJ, Grutter AJ, Maranville BB, Arenholz E, Borchers JA, Liu K. Controllable positive exchange bias via redox-driven oxygen migration. Nat Commun 2016; 7:11050. [PMID: 26996674 PMCID: PMC4802176 DOI: 10.1038/ncomms11050] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/16/2016] [Indexed: 12/01/2022] Open
Abstract
Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.
Collapse
Affiliation(s)
- Dustin A. Gilbert
- Physics Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | - Justin Olamit
- Physics Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Randy K. Dumas
- Physics Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
- Department of Physics, University of Gothenburg, Gothenburg 412 96, Sweden
| | - B. J. Kirby
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | | | | | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - Kai Liu
- Physics Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
7
|
Gilbert DA, Ye L, Varea A, Agramunt-Puig S, del Valle N, Navau C, López-Barbera JF, Buchanan KS, Hoffmann A, Sánchez A, Sort J, Liu K, Nogués J. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex. NANOSCALE 2015; 7:9878-9885. [PMID: 25965577 DOI: 10.1039/c5nr01856k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.
Collapse
|