1
|
Zhao T, Balram AC, Jain JK. Composite Fermion Pairing Induced by Landau Level Mixing. PHYSICAL REVIEW LETTERS 2023; 130:186302. [PMID: 37204896 DOI: 10.1103/physrevlett.130.186302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023]
Abstract
Pairing of composite fermions provides a possible mechanism for fractional quantum Hall effect at even denominator fractions and is believed to serve as a platform for realizing quasiparticles with non-Abelian braiding statistics. We present results from fixed-phase diffusion Monte Carlo calculations which predict that substantial Landau level mixing can induce a pairing of composite fermions at filling factors ν=1/2 and ν=1/4 in the l=-3 relative angular momentum channel, thereby destabilizing the composite-fermion Fermi seas to produce non-Abelian fractional quantum Hall states.
Collapse
Affiliation(s)
- Tongzhou Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ajit C Balram
- Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - J K Jain
- Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Hossain MS, Ma MK, Chung YJ, Singh SK, Gupta A, West KW, Baldwin KW, Pfeiffer LN, Winkler R, Shayegan M. Valley-Tunable Even-Denominator Fractional Quantum Hall State in the Lowest Landau Level of an Anisotropic System. PHYSICAL REVIEW LETTERS 2023; 130:126301. [PMID: 37027870 DOI: 10.1103/physrevlett.130.126301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Fractional quantum Hall states (FQHSs) at even-denominator Landau level filling factors (ν) are of prime interest as they are predicted to host exotic, topological states of matter. We report here the observation of a FQHS at ν=1/2 in a two-dimensional electron system of exceptionally high quality, confined to a wide AlAs quantum well, where the electrons can occupy multiple conduction-band valleys with an anisotropic effective mass. The anisotropy and multivalley degree of freedom offer an unprecedented tunability of the ν=1/2 FQHS as we can control both the valley occupancy via the application of in-plane strain, and the ratio between the strengths of the short- and long-range Coulomb interaction by tilting the sample in the magnetic field to change the electron charge distribution. Thanks to this tunability, we observe phase transitions from a compressible Fermi liquid to an incompressible FQHS and then to an insulating phase as a function of tilt angle. We find that this evolution and the energy gap of the ν=1/2 FQHS depend strongly on valley occupancy.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Meng K Ma
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Wang C, Gupta A, Singh SK, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Winkler R, Shayegan M. Even-Denominator Fractional Quantum Hall State at Filling Factor ν=3/4. PHYSICAL REVIEW LETTERS 2022; 129:156801. [PMID: 36269975 DOI: 10.1103/physrevlett.129.156801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Fractional quantum Hall states (FQHSs) exemplify exotic phases of low-disorder two-dimensional (2D) electron systems when electron-electron interaction dominates over the thermal and kinetic energies. Particularly intriguing among the FQHSs are those observed at even-denominator Landau level filling factors, as their quasiparticles are generally believed to obey non-Abelian statistics and be of potential use in topological quantum computing. Such states, however, are very rare and fragile, and are typically observed in the excited Landau level of 2D electron systems with the lowest amount of disorder. Here we report the observation of a new and unexpected even-denominator FQHS at filling factor ν=3/4 in a GaAs 2D hole system with an exceptionally high quality (mobility). Our magnetotransport measurements reveal a strong minimum in the longitudinal resistance at ν=3/4, accompanied by a developing Hall plateau centered at (h/e^{2})/(3/4). This even-denominator FQHS is very unusual as it is observed in the lowest Landau level and in a 2D hole system. While its origin is unclear, it is likely a non-Abelian state, emerging from the residual interaction between composite fermions.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Cullen JH, Bhalla P, Marcellina E, Hamilton AR, Culcer D. Generating a Topological Anomalous Hall Effect in a Nonmagnetic Conductor: An In-Plane Magnetic Field as a Direct Probe of the Berry Curvature. PHYSICAL REVIEW LETTERS 2021; 126:256601. [PMID: 34241516 DOI: 10.1103/physrevlett.126.256601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate that the Berry curvature monopole of nonmagnetic two-dimensional spin-3/2 holes leads to a novel Hall effect linear in an applied in-plane magnetic field B_{∥}. Remarkably, all scalar and spin-dependent disorder contributions vanish to leading order in B_{∥}, while there is no Lorentz force and hence no ordinary Hall effect. This purely intrinsic phenomenon, which we term the anomalous planar Hall effect (APHE), provides a direct transport probe of the Berry curvature accessible in all p-type semiconductors. We discuss experimental setups for its measurement.
Collapse
Affiliation(s)
- James H Cullen
- School of Physics, The University of New South Wales, Sydney 2052, Australia
- Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
| | - Pankaj Bhalla
- Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
- Beijing Computational Science Research Center, 100193 Beijing, China
| | - E Marcellina
- School of Physics, The University of New South Wales, Sydney 2052, Australia
- Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
| | - A R Hamilton
- School of Physics, The University of New South Wales, Sydney 2052, Australia
- Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
| | - Dimitrie Culcer
- School of Physics, The University of New South Wales, Sydney 2052, Australia
- Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Barkeshli M, Nayak C, Papić Z, Young A, Zaletel M. Topological Exciton Fermi Surfaces in Two-Component Fractional Quantized Hall Insulators. PHYSICAL REVIEW LETTERS 2018; 121:026603. [PMID: 30085706 DOI: 10.1103/physrevlett.121.026603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 06/08/2023]
Abstract
A wide variety of two-dimensional electron systems allow for independent control of the total and relative charge density of two-component fractional quantum Hall (FQH) states. In particular, a recent experiment on bilayer graphene (BLG) observed a continuous transition between a compressible and incompressible phase at total filling ν_{T}=1/2 as charge is transferred between the layers, with the remarkable property that the incompressible phase has a finite interlayer polarizability. We argue that this occurs because the topological order of ν_{T}=1/2 systems supports a novel type of interlayer exciton that carries Fermi statistics. If the fermionic excitons are lower in energy than the conventional bosonic excitons (i.e., electron-hole pairs), they can form an emergent neutral Fermi surface, providing a possible explanation of an incompressible yet polarizable state at ν_{T}=1/2. We perform exact diagonalization studies that demonstrate that fermionic excitons are indeed lower in energy than bosonic excitons. This suggests that a "topological exciton metal" hidden inside a FQH insulator may have been realized experimentally in BLG. We discuss several detection schemes by which the topological exciton metal can be experimentally probed.
Collapse
Affiliation(s)
- Maissam Barkeshli
- Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Chetan Nayak
- Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
| | - Zlatko Papić
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrea Young
- Department of Physics, University of California, Santa Barbara, California 93106-6105, USA
| | - Michael Zaletel
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
6
|
Falson J, Kawasaki M. A review of the quantum Hall effects in MgZnO/ZnO heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056501. [PMID: 29353814 DOI: 10.1088/1361-6633/aaa978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn[Formula: see text]O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility ([Formula: see text] cm2 Vs-1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.
Collapse
Affiliation(s)
- Joseph Falson
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | |
Collapse
|
7
|
Mueed MA, Kamburov D, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Geometric Resonance of Composite Fermions near Bilayer Quantum Hall States. PHYSICAL REVIEW LETTERS 2016; 117:246801. [PMID: 28009213 DOI: 10.1103/physrevlett.117.246801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Via the application of a parallel magnetic field, we induce a single-layer to bilayer transition in two-dimensional electron systems confined to wide GaAs quantum wells and study the geometric resonance of composite fermions (CFs) with a periodic density modulation in our samples. The measurements reveal that CFs exist close to bilayer quantum Hall states, formed at Landau level filling factors ν=1 and 1/2. Near ν=1, the geometric resonance features are consistent with half the total electron density in the bilayer system, implying that CFs prefer to stay in separate layers and exhibit a two-component behavior. In contrast, close to ν=1/2, CFs appear single-layer-like (single component) as their resonance features correspond to the total density.
Collapse
Affiliation(s)
- M A Mueed
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - D Kamburov
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Liu Y, Hasdemir S, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Observation of an Anisotropic Wigner Crystal. PHYSICAL REVIEW LETTERS 2016; 117:106802. [PMID: 27636486 DOI: 10.1103/physrevlett.117.106802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 06/06/2023]
Abstract
We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1/3≲ν≲2/3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B_{∥}) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B_{∥}. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B_{∥} about 10 times smaller than the resistance perpendicular to B_{∥}. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S Hasdemir
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|