1
|
Mishra C, Santos L, Nath R. Self-Bound Doubly Dipolar Bose-Einstein Condensates. PHYSICAL REVIEW LETTERS 2020; 124:073402. [PMID: 32142338 DOI: 10.1103/physrevlett.124.073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
We analyze the physics of self-bound droplets in a doubly dipolar Bose-Einstein condensate composed by particles with both electric and magnetic dipole moments. Using the particularly relevant case of dysprosium, we show that the anisotropy of the doubly dipolar interaction potential is highly versatile and nontrivial, depending critically on the relative orientation and strength between the two dipole moments. This opens novel possibilities for exploring intriguing quantum many-body physics. Interestingly, by varying the angle between the two dipoles we find a dimensional crossover from quasi-one-dimensional to quasi-two-dimensional self-bound droplets. This opens a so far unique scenario in condensate physics, in which a dimensional crossover is solely driven by interactions in the absence of any confinement.
Collapse
Affiliation(s)
- Chinmayee Mishra
- Indian Institute of Science Education and Research, Pune 411 008, India
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| | - Rejish Nath
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
2
|
Dörfler AD, Eberle P, Koner D, Tomza M, Meuwly M, Willitsch S. Long-range versus short-range effects in cold molecular ion-neutral collisions. Nat Commun 2019; 10:5429. [PMID: 31780657 PMCID: PMC6882903 DOI: 10.1038/s41467-019-13218-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The investigation of cold interactions between ions and neutrals has recently emerged as a new scientific frontier at the interface of physics and chemistry. Here, we report a study of charge-transfer (CT) collisions of Rb atoms with N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions in the mK regime using a dynamic ion-neutral hybrid trapping experiment. We observe markedly different CT kinetics and dynamics for the different systems and reaction channels studied. While the kinetics in some channels are consistent with classical capture theory, others show distinct non-universal dynamics. The experimental results are interpreted with the help of classical-capture, quasiclassical-trajectory and quantum-scattering calculations using ab-initio potentials for the highly excited molecular states involved. The theoretical analysis reveals an intricate interplay between short- and long-range effects in the different reaction channels which ultimately determines the CT dynamics and rates. Our results illustrate salient mechanisms that determine the efficiency of cold molecular CT reactions. Studies on reactions between cold molecular ions and neutral atoms provide insights into intermolecular interactions. Here the authors explore the kinetics and dynamics of charge-transfer collisions between the cold N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ and O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{+}$$\end{document}2+ ions and neutral Rb atoms and discuss the role of long- and short-range effects.
Collapse
Affiliation(s)
- Alexander D Dörfler
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Pascal Eberle
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|
3
|
Lepers M, Li H, Wyart JF, Quéméner G, Dulieu O. Ultracold Rare-Earth Magnetic Atoms with an Electric Dipole Moment. PHYSICAL REVIEW LETTERS 2018; 121:063201. [PMID: 30141648 DOI: 10.1103/physrevlett.121.063201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm^{-1} with electronic angular momentum J=10, and at 17514.50 cm^{-1} with J=9, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, i.e., an electric field of 5 kV/cm, we predict a large magnetic dipole moment up to 13 Bohr magnetons, and sizeable electric dipole moment up to 0.22 D. When a magnetic field is present, we show that the induced electric dipole moment is strongly dependent on the angle between the fields. The lifetime of the field-mixed levels is found in the millisecond range, thus allowing for suitable experimental detection and manipulation.
Collapse
Affiliation(s)
- Maxence Lepers
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Hui Li
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| | - Jean-François Wyart
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
- LERMA, Observatoire de Paris-Meudon, PSL Research University, Sorbonne Universités, UPMC Université Paris 6, CNRS UMR8112, 92195 Meudon, France
| | - Goulven Quéméner
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Dulieu
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|