1
|
Ramachandran S, Jensen S, Alhassid Y. Pseudogap Effects in the Strongly Correlated Regime of the Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2024; 133:143405. [PMID: 39423404 DOI: 10.1103/physrevlett.133.143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/22/2024] [Indexed: 10/21/2024]
Abstract
The two-species Fermi gas with attractive short-range interactions in two spatial dimensions provides a paradigmatic system for the understanding of strongly correlated Fermi superfluids in two dimensions. It is known to exhibit a BEC to BCS crossover as a function of ln(k_{F}a), where a is the scattering length, and to undergo a Berezinskii-Kosterlitz-Thouless superfluid transition below a critical temperature T_{c}. However, the extent of a pseudogap regime in the strongly correlated regime of ln(k_{F}a)∼1, in which pairing correlations persist above T_{c}, remains largely unexplored with controlled theoretical methods. Here, we use finite-temperature auxiliary-field quantum Monte Carlo methods on discrete lattices in the canonical ensemble formalism to calculate thermodynamical observables in the strongly correlated regime. We extrapolate to continuous time and the continuum limit to eliminate systematic errors and present results for particle numbers ranging from N=42 to N=162. We estimate T_{c} by a finite-size scaling analysis, and observe clear pseudogap signatures above T_{c} and below a temperature T^{*} in both the spin susceptibility and free-energy gap. We also present results for the contact, a fundamental thermodynamic property of quantum many-body systems with short-range interactions.
Collapse
|
2
|
He YY, Shi H, Zhang S. Precision Many-Body Study of the Berezinskii-Kosterlitz-Thouless Transition and Temperature-Dependent Properties in the Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2022; 129:076403. [PMID: 36018705 DOI: 10.1103/physrevlett.129.076403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We perform large-scale, numerically exact calculations on the two-dimensional interacting Fermi gas with a contact attraction. Reaching much larger lattice sizes and lower temperatures than previously possible, we determine systematically the finite-temperature phase diagram of the Berezinskii-Kosterlitz-Thouless (BKT) transitions for interaction strengths ranging from BCS to crossover to BEC regimes. The evolutions of the pairing wave functions and the fermion and Cooper pair momentum distributions with temperature are accurately characterized. In the crossover regime, we find that the contact has a nonmonotonic temperature dependence, first increasing as temperature is lowered, and then showing a slight decline below the BKT transition temperature to approach the ground-state value from above.
Collapse
Affiliation(s)
- Yuan-Yao He
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Hao Shi
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
3
|
Sobirey L, Luick N, Bohlen M, Biss H, Moritz H, Lompe T. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 2021; 372:844-846. [PMID: 34016777 DOI: 10.1126/science.abc8793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/17/2021] [Indexed: 11/02/2022]
Abstract
Understanding how strongly correlated two-dimensional (2D) systems can give rise to unconventional superconductivity with high critical temperatures is one of the major unsolved problems in condensed matter physics. Ultracold 2D Fermi gases have emerged as clean and controllable model systems to study the interplay of strong correlations and reduced dimensionality, but direct evidence of superfluidity in these systems has been missing. We demonstrate superfluidity in an ultracold 2D Fermi gas by moving a periodic potential through the system and observing no dissipation below a critical velocity v c We measure v c as a function of interaction strength and find a maximum in the crossover regime between bosonic and fermionic superfluidity. Our measurements enable systematic studies of the influence of reduced dimensionality on fermionic superfluidity.
Collapse
Affiliation(s)
- Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Bohlen
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hauke Biss
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Enss T. Bulk Viscosity and Contact Correlations in Attractive Fermi Gases. PHYSICAL REVIEW LETTERS 2019; 123:205301. [PMID: 31809121 DOI: 10.1103/physrevlett.123.205301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 06/10/2023]
Abstract
The bulk viscosity determines dissipation during hydrodynamic expansion. It vanishes in scale invariant fluids, while a nonzero value quantifies the deviation from scale invariance. For the dilute Fermi gas the bulk viscosity is given exactly by the correlation function of the contact density of local pairs. As a consequence, scale invariance is broken purely by pair fluctuations. These fluctuations give rise also to logarithmic terms in the bulk viscosity of the high-temperature nondegenerate gas. For the quantum degenerate regime I report numerical Luttinger-Ward results for the contact correlator and the dynamical bulk viscosity throughout the BEC-BCS crossover. The ratio of bulk to shear viscosity ζ/η is found to exceed the kinetic theory prediction in the quantum degenerate regime. Near the superfluid phase transition the bulk viscosity is enhanced by critical fluctuations and has observable effects on dissipative heating, expansion dynamics, and sound attenuation.
Collapse
Affiliation(s)
- Tilman Enss
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Peppler T, Dyke P, Zamorano M, Herrera I, Hoinka S, Vale CJ. Quantum Anomaly and 2D-3D Crossover in Strongly Interacting Fermi Gases. PHYSICAL REVIEW LETTERS 2018; 121:120402. [PMID: 30296149 DOI: 10.1103/physrevlett.121.120402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2018] [Indexed: 06/08/2023]
Abstract
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole oscillation or breathing mode in highly oblate gases with tunable interactions. The breathing mode frequency is set by the adiabatic compressibility and probes the thermodynamic equation of state. In 2D, a dynamical scaling symmetry for atoms interacting via a δ potential predicts the breathing mode to occur at exactly twice the harmonic confinement frequency. However, a renormalized quantum treatment introduces a new length scale which breaks this classical scale invariance resulting in a so-called quantum anomaly. Our measurements deep in the 2D regime lie above the scale-invariant prediction for a range of interaction strengths providing evidence for the quantum anomaly and signifying the breakdown of an elementary δ-potential model of atomic interactions. By varying the atom number we can tune the chemical potential and see the breathing mode frequency evolve smoothly between the 2D to 3D thermodynamic limits.
Collapse
Affiliation(s)
- T Peppler
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - P Dyke
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - M Zamorano
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - I Herrera
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - S Hoinka
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - C J Vale
- Centre for Quantum and Optical Sciences, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
6
|
Drut JE, McKenney JR, Daza WS, Lin CL, Ordóñez CR. Quantum Anomaly and Thermodynamics of One-Dimensional Fermions with Three-Body Interactions. PHYSICAL REVIEW LETTERS 2018; 120:243002. [PMID: 29957009 DOI: 10.1103/physrevlett.120.243002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 06/08/2023]
Abstract
We show that a system of three species of one-dimensional fermions, with an attractive three-body contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions with two-body contact forces. We show, furthermore, that those two cases (and their multispecies generalizations) are the only nonrelativistic systems with contact interactions that display a scale anomaly. While the two-dimensional case is well known and has been under study both experimentally and theoretically for years, the one-dimensional case presented here has remained unexplored. For the latter, we calculate the impact of the anomaly on the equation of state, which appears through the generalization of Tan's contact for three-body forces, and determine the pressure at finite temperature. In addition, we show that the third-order virial coefficient is proportional to the second-order coefficient of the two-dimensional two-body case.
Collapse
Affiliation(s)
- J E Drut
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | - J R McKenney
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | - W S Daza
- Physics Department, University of Houston, Houston, Texas 77024-5005, USA
| | - C L Lin
- Physics Department, University of Houston, Houston, Texas 77024-5005, USA
| | - C R Ordóñez
- Physics Department, University of Houston, Houston, Texas 77024-5005, USA
| |
Collapse
|
7
|
Hueck K, Luick N, Sobirey L, Siegl J, Lompe T, Moritz H. Two-Dimensional Homogeneous Fermi Gases. PHYSICAL REVIEW LETTERS 2018; 120:060402. [PMID: 29481215 DOI: 10.1103/physrevlett.120.060402] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/07/2017] [Indexed: 06/08/2023]
Abstract
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Collapse
Affiliation(s)
- Klaus Hueck
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Niclas Luick
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lennart Sobirey
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jonas Siegl
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Lompe
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henning Moritz
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Luciuk C, Smale S, Böttcher F, Sharum H, Olsen BA, Trotzky S, Enss T, Thywissen JH. Observation of Quantum-Limited Spin Transport in Strongly Interacting Two-Dimensional Fermi Gases. PHYSICAL REVIEW LETTERS 2017; 118:130405. [PMID: 28409948 DOI: 10.1103/physrevlett.118.130405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/07/2023]
Abstract
We measure the transport properties of two-dimensional ultracold Fermi gases during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we are able to distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of a spin current around the local magnetization. When the two-dimensional scattering length is tuned to be comparable to the inverse Fermi wave vector k_{F}^{-1}, we find that the bare transverse spin diffusivity reaches a minimum of 1.7(6)ℏ/m, where m is the bare particle mass. The rate of demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved spectroscopy. The contact rises to 0.28(3)k_{F}^{2} per particle, which quantifies how scaling symmetry is broken by near-resonant interactions, unlike in unitary three-dimensional systems. Our observations support the conjecture that, in systems with strong scattering, the local relaxation rate is bounded from above by k_{B}T/ℏ.
Collapse
Affiliation(s)
- C Luciuk
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - S Smale
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - F Böttcher
- 5. Physikalisches Institut and Centre for Integrated Quantum Science and Technology, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - H Sharum
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - B A Olsen
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - S Trotzky
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - T Enss
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - J H Thywissen
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
9
|
Shi H, Rosenberg P, Chiesa S, Zhang S. Rashba Spin-Orbit Coupling, Strong Interactions, and the BCS-BEC Crossover in the Ground State of the Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2016; 117:040401. [PMID: 27494461 DOI: 10.1103/physrevlett.117.040401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 06/06/2023]
Abstract
The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportunity to study the interplay between strong interaction and spin-orbit coupling (SOC) in a tunable, disorder-free system. We present here precision ab initio numerical results on the two-dimensional, unpolarized, uniform Fermi gas with attractive interactions and Rashba SOC. Using the auxiliary-field quantum Monte Carlo method and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large system sizes to provide accurate results systematically as a function of experimental parameters. We obtain the equation of state, the momentum distributions, the pseudospin correlations, and the pair wave functions. Our results help illuminate the rich pairing structure induced by SOC, and provide benchmarks for theory and guidance to future experimental efforts.
Collapse
Affiliation(s)
- Hao Shi
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - Peter Rosenberg
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - Simone Chiesa
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - Shiwei Zhang
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| |
Collapse
|
10
|
Boettcher I, Bayha L, Kedar D, Murthy PA, Neidig M, Ries MG, Wenz AN, Zürn G, Jochim S, Enss T. Equation of State of Ultracold Fermions in the 2D BEC-BCS Crossover Region. PHYSICAL REVIEW LETTERS 2016; 116:045303. [PMID: 26871341 DOI: 10.1103/physrevlett.116.045303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 06/05/2023]
Abstract
We report the experimental measurement of the equation of state of a two-dimensional Fermi gas with attractive s-wave interactions throughout the crossover from a weakly coupled Fermi gas to a Bose gas of tightly bound dimers as the interaction strength is varied. We demonstrate that interactions lead to a renormalization of the density of the Fermi gas by several orders of magnitude. We compare our data near the ground state and at finite temperature with predictions for both fermions and bosons from quantum Monte Carlo simulations and Luttinger-Ward theory. Our results serve as input for investigations of close-to-equilibrium dynamics and transport in the two-dimensional system.
Collapse
Affiliation(s)
- I Boettcher
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - L Bayha
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - D Kedar
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - P A Murthy
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - M Neidig
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - M G Ries
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - A N Wenz
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - G Zürn
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - S Jochim
- Physikalisches Institut, Heidelberg University, D-69120 Heidelberg, Germany
| | - T Enss
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Fenech K, Dyke P, Peppler T, Lingham MG, Hoinka S, Hu H, Vale CJ. Thermodynamics of an Attractive 2D Fermi Gas. PHYSICAL REVIEW LETTERS 2016; 116:045302. [PMID: 26871340 DOI: 10.1103/physrevlett.116.045302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 06/05/2023]
Abstract
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.
Collapse
Affiliation(s)
- K Fenech
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - P Dyke
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - T Peppler
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - M G Lingham
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - S Hoinka
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - H Hu
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| | - C J Vale
- Centre for Quantum and Optical Sciences, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
12
|
Wu CT, Anderson BM, Boyack R, Levin K. Quasicondensation in Two-Dimensional Fermi Gases. PHYSICAL REVIEW LETTERS 2015; 115:240401. [PMID: 26705613 DOI: 10.1103/physrevlett.115.240401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 06/05/2023]
Abstract
In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS.
Collapse
Affiliation(s)
- Chien-Te Wu
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Brandon M Anderson
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Rufus Boyack
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - K Levin
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Anderson ER, Drut JE. Pressure, compressibility, and contact of the two-dimensional attractive fermi gas. PHYSICAL REVIEW LETTERS 2015; 115:115301. [PMID: 26406837 DOI: 10.1103/physrevlett.115.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 06/05/2023]
Abstract
Using ab initio lattice methods, we calculate the finite temperature thermodynamics of homogeneous two-dimensional spin-1/2 fermions with attractive short-range interactions. We present results for the density, pressure, compressibility, and quantum anomaly (i.e., Tan's contact) for a wide range of temperatures (mostly above the superfluid phase, including the pseudogap regime) and coupling strengths, focusing on the unpolarized case. Within our statistical and systematic uncertainties, our prediction for the density equation of state differs quantitatively from the prediction by Luttinger-Ward theory in the strongly coupled region of parameter space, but otherwise agrees well with it. We also compare our calculations with the second- and third-order virial expansion, with which they are in excellent agreement in the low-fugacity regime.
Collapse
Affiliation(s)
- E R Anderson
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| | - J E Drut
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
| |
Collapse
|
14
|
Ong W, Cheng C, Arakelyan I, Thomas JE. Spin-imbalanced quasi-two-dimensional Fermi gases. PHYSICAL REVIEW LETTERS 2015; 114:110403. [PMID: 25839246 DOI: 10.1103/physrevlett.114.110403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Indexed: 06/04/2023]
Abstract
We measure the density profiles for a Fermi gas of (6)Li containing N(1) spin-up atoms and N(2) spin-down atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured as a function of spin imbalance N(2)/N(1) and interaction strength, which is controlled by means of a collisional (Feshbach) resonance. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a true two-dimensional system. We find that the data for normal-fluid mixtures are reasonably well fit by a simple two-dimensional polaron model of the free energy. Not predicted by the model is a phase transition to a spin-balanced central core, which is observed above a critical value of N(2)/N(1). Our observations provide important benchmarks for predictions of the phase structure of quasi-two-dimensional Fermi gases.
Collapse
Affiliation(s)
- W Ong
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Chingyun Cheng
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - I Arakelyan
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J E Thomas
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
15
|
Dynamical phases in quenched spin-orbit-coupled degenerate Fermi gas. Nat Commun 2015; 6:6103. [PMID: 25600665 DOI: 10.1038/ncomms7103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/12/2014] [Indexed: 11/08/2022] Open
Abstract
The spin-orbit-coupled degenerate Fermi gas provides a new platform for realizing topological superfluids and related topological excitations. However, previous studies have been mainly focused on the topological properties of the stationary ground state. Here, we investigate the quench dynamics of a spin-orbit-coupled two-dimensional Fermi gas in which the Zeeman field serves as the major quench parameter. Three post-quench dynamical phases are identified according to the asymptotic behaviour of the order parameter. In the undamped phase, a persistent oscillation of the order parameter may support a topological Floquet state with multiple edge states. In the damped phase, the magnitude of the order parameter approaches a constant via a power-law decay, which may support a dynamical topological phase with one edge state at the boundary. In the overdamped phase, the order parameter decays to zero exponentially although the condensate fraction remains finite. These predictions can be observed in the strong-coupling regime.
Collapse
|