1
|
Petiziol F, Arimondo E, Giannelli L, Mintert F, Wimberger S. Optimized three-level quantum transfers based on frequency-modulated optical excitations. Sci Rep 2020; 10:2185. [PMID: 32042002 PMCID: PMC7010696 DOI: 10.1038/s41598-020-59046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
The difficulty in combining high fidelity with fast operation times and robustness against sources of noise is the central challenge of most quantum control problems, with immediate implications for the realization of quantum devices. We theoretically propose a protocol, based on the widespread stimulated Raman adiabatic passage technique, which achieves these objectives for quantum state transfers in generic three-level systems. Our protocol realizes accelerated adiabatic following through the application of additional control fields on the optical excitations. These act along frequency sidebands of the principal adiabatic pulses, dynamically counteracting undesired transitions. The scheme facilitates experimental control, not requiring new hardly-accessible resources. We show numerically that the method is efficient in a very wide set of control parameters, bringing the timescales closer to the quantum speed limit, also in the presence of environmental disturbance. These results hold for complete population transfers and for many applications, e.g., for realizing quantum gates, both for optical and microwave implementations. Furthermore, extensions to adiabatic passage problems in more-level systems are straightforward.
Collapse
Affiliation(s)
- Francesco Petiziol
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy. .,National Institute for Nuclear Physics (INFN), Milano Bicocca Section, Parma Group, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Ennio Arimondo
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy.,INO-CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Luigi Giannelli
- Theoretische Physik, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Florian Mintert
- Department of Physics, Imperial College, SW7 2AZ, London, United Kingdom
| | - Sandro Wimberger
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.,National Institute for Nuclear Physics (INFN), Milano Bicocca Section, Parma Group, Parco Area delle Scienze 7/A, 43124, Parma, Italy
| |
Collapse
|
2
|
Baksic A, Ribeiro H, Clerk AA. Speeding up Adiabatic Quantum State Transfer by Using Dressed States. PHYSICAL REVIEW LETTERS 2016; 116:230503. [PMID: 27341219 DOI: 10.1103/physrevlett.116.230503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 06/06/2023]
Abstract
We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.
Collapse
Affiliation(s)
- Alexandre Baksic
- Department of Physics, McGill University, 3600 rue University, Montréal, Quebec H3A 2T8, Canada
| | - Hugo Ribeiro
- Department of Physics, McGill University, 3600 rue University, Montréal, Quebec H3A 2T8, Canada
| | - Aashish A Clerk
- Department of Physics, McGill University, 3600 rue University, Montréal, Quebec H3A 2T8, Canada
| |
Collapse
|