1
|
Wang Z, Yu N, Reichhardt C, Reichhardt CJO, Xu A, Chen X, Feng Y. Shapiro steps observed in a two-dimensional Yukawa solid modulated by a one-dimensional vibrational periodic substrate. Phys Rev E 2025; 111:035202. [PMID: 40247524 DOI: 10.1103/physreve.111.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
Depinning dynamics of a two-dimensional (2D) solid dusty plasma modulated by a one-dimensional (1D) vibrational periodic substrate are investigated using Langevin dynamical simulations. As the uniform driving force increases gradually, from the overall drift velocity varying with the driving force, four significant Shapiro steps are discovered. The data analysis results indicate that, when the ratio of the frequency from the drift motion over potential wells to the external frequency from the modulation substrate is close to integers, dynamic mode locking occurs, corresponding to the discovered Shapiro steps. Around both termini of the first and fourth Shapiro steps, the transitions are found to be always continuous, however, the transition between the second and third Shapiro steps is discontinuous, probably due to the different arrangements of particles.
Collapse
Affiliation(s)
- Zhaoye Wang
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Nichen Yu
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - C Reichhardt
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - Ao Xu
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Xin Chen
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| | - Yan Feng
- Soochow University, Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Suzhou 215006, China
| |
Collapse
|
2
|
Yu N, Huang D, Feng Y. Melting curve of two-dimensional Yukawa systems predicted by isomorph theory. Phys Rev E 2024; 109:065212. [PMID: 39020935 DOI: 10.1103/physreve.109.065212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The analytical expression for the conditions of the solid-fluid phase transition, i.e., the melting curve, for two-dimensional (2D) Yukawa systems is derived theoretically from the isomorph theory. To demonstrate that the isomorph theory is applicable to 2D Yukawa systems, molecular dynamical simulations are performed under various conditions. Based on the isomorph theory, the analytical isomorphic curves of 2D Yukawa systems are derived using the local effective power-law exponent of the Yukawa potential. From the obtained analytical isomorphic curves, the melting curve of 2D Yukawa systems is directly determined using only two known melting points. The determined melting curve of 2D Yukawa systems well agrees with the previous obtained melting results using completely different approaches.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Yu N, Huang D, Lu S, Khrapak S, Feng Y. Universal scaling of transverse sound speed and its isomorphic property in Yukawa fluids. Phys Rev E 2024; 109:035202. [PMID: 38632806 DOI: 10.1103/physreve.109.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const. It is demonstrated that the reduced transverse sound speed, i.e., the ratio of the transverse sound speed to the thermal speed, is an isomorph invariant, which is a quasiuniversal function of Γ/Γ_{m}. The obtained isomorph invariant of the reduced transverse sound speed can be useful to estimate the transverse sound speed, or determine the coupling strength, with applications to dusty (complex) plasma or colloidal systems.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Sergey Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Ge Z, Huang D, Lu S, Liang C, Baggioli M, Feng Y. Observation of fast sound in two-dimensional dusty plasma liquids. Phys Rev E 2023; 107:055211. [PMID: 37328975 DOI: 10.1103/physreve.107.055211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Equilibrium molecular dynamics simulations are performed to study two-dimensional (2D) dusty plasma liquids. Based on the stochastic thermal motion of simulated particles, the longitudinal and transverse phonon spectra are calculated, and used to determine the corresponding dispersion relations. From there, the longitudinal and transverse sound speeds of 2D dusty plasma liquids are obtained. It is discovered that, for wavenumbers beyond the hydrodynamic regime, the longitudinal sound speed of a 2D dusty plasma liquid exceeds its adiabatic value, i.e., the so-called fast sound. This phenomenon appears at roughly the same length scale of the cutoff wavenumber for transverse waves, confirming its relation to the emergent solidity of liquids in the nonhydrodynamic regime. Using the thermodynamic and transport coefficients extracted from the previous studies, and relying on the Frenkel theory, the ratio of the longitudinal to the adiabatic sound speeds is derived analytically, providing the optimal conditions for fast sound, which are in quantitative agreement with the current simulation results.
Collapse
Affiliation(s)
- Zhenyu Ge
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Chen Liang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Matteo Baggioli
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China and Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Huang Y, Reichhardt C, Reichhardt CJO, Feng Y. Superlubric-pinned transition of a two-dimensional solid dusty plasma under a periodic triangular substrate. Phys Rev E 2022; 106:035204. [PMID: 36266846 DOI: 10.1103/physreve.106.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The superlubric-pinned transition in the depinning dynamics of a two-dimensional (2D) solid dusty plasma modulated by 2D triangular periodic substrates is investigated using Langevin dynamical simulations. When the lattice structure of the 2D solid dusty plasma perfectly matches the triangular substrate, two distinctive pinned and moving ordered states are observed as the external uniform driving force gradually increases from zero. When there is a mismatch between the lattice structure and the triangular substrate, however, on shallow substrates, it is discovered that all of the particles can slide freely on the substrate even when the applied driving force is tiny. This is a typical example of superlubricity, which is caused by the competition between the substrate-particle and particle-particle interactions. If the substrate depth increases further, as the driving force increases from zero, there are three dynamical states consisting of the pinned state, the disordered plastic flow state, and the moving ordered state. In an underdense system, where there are fewer particles than potential well minima, it is found that the occurrence of the three different dynamical states is controlled by the depth of the substrate, which is quantitatively characterized using the average mobility.
Collapse
Affiliation(s)
- Y Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Qiu P, Feng Y. Fast particles overtaking shock front in two-dimensional Yukawa solids. Phys Rev E 2022; 106:015203. [PMID: 35974640 DOI: 10.1103/physreve.106.015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
High-speed particles overtaking the shock front during the propagation of compressional shocks in two-dimensional (2D) Yukawa solids are investigated using molecular dynamical simulations. When the compressional speed is lower, all particles around the shock front are almost accelerated synchronously. However, when the compressional speed is much higher, some particles penetrate the shock front to enter the preshock region. Around the shock front, it is found that the particle velocity profile at the first peak of the dispersive shock wave (DSW) is able to be described using the Gaussian distribution, so that the amplitudes of the DSW can be well characterized. As the compressional speed increases, the particle velocity corresponding to these DSW's amplitudes increase more substantially than the shock front speed. These amplitudes of the DSW are found to be able to predict the occurrence of the fast particles. Combined with the previous study of the DSW's period, it is demonstrated that the properties of the DSW are nearly not affected by the conditions of the 2D Yukawa systems, but only related to the compressional speed.
Collapse
Affiliation(s)
- Pengwei Qiu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Zhu W, Reichhardt C, Reichhardt CJO, Feng Y. Directional locking in a two-dimensional Yukawa solid modulated by a two-dimensional periodic substrate. Phys Rev E 2022; 106:015202. [PMID: 35974594 DOI: 10.1103/physreve.106.015202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Directional depinning dynamics of a two-dimensional (2D) dusty plasma solid modulated by a 2D square periodic substrate are investigated using Langevin dynamical simulations. We observe prominent directional locking effects when the direction of the external driving force is varied relative to the underlying square substrate. These locking steps appear when the direction of the driving force is close to the symmetry direction of the substrate, corresponding to the different dynamical flow patterns and the structures. In the conditions between the adjacent locking steps, moving ordered states are observed. Although the discontinuous transitions often occur between the locking steps and the nonlocking portion, the continuous transitions are also found around the locking step associated with the disordered plastic flow close to its termini. Our results show that directional locking also occurs for underdamped systems, which could be tested experimentally in dusty plasmas modulated by 2D substrates.
Collapse
Affiliation(s)
- Wenqi Zhu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Lu S, Huang D, Feng Y. Shear softening and hardening of a two-dimensional Yukawa solid. Phys Rev E 2022; 105:035203. [PMID: 35428122 DOI: 10.1103/physreve.105.035203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Langevin dynamical simulations are performed to study the elastic behaviors of two-dimensional (2D) solid dusty plasmas under the periodic shear deformation. The frequency- and strain-dependent shear moduli G(ω,γ) of our simulated 2D Yukawa solid are calculated from the ratio of the shear stress to strain in different orientations. The shear-softening and -hardening properties in different lattice orientations are discovered from the obtained G(ω,γ). The component of the elastic constant tensor corresponding to the shear deformation is also calculated, whose variation trend exactly agrees with the discovered shear-softening and -hardening features in different shear directions. It is also found that the shear modulus of the 2D Yukawa solid always increases monotonically with the frequency.
Collapse
Affiliation(s)
- Shaoyu Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Huang Y, Li W, Reichhardt C, Reichhardt CJO, Feng Y. Phonon spectra of a two-dimensional solid dusty plasma modified by two-dimensional periodic substrates. Phys Rev E 2022; 105:015202. [PMID: 35193179 DOI: 10.1103/physreve.105.015202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Phonon spectra of a two-dimensional (2D) solid dusty plasma modulated by 2D square and triangular periodic substrates are investigated using Langevin dynamical simulations. The commensurability ratio, i.e., the ratio of the number of particles to the number of potential well minima, is set to 1 or 2. The resulting phonon spectra show that propagation of waves is always suppressed due to the confinement of particles by the applied 2D periodic substrates. For a commensurability ratio of 1, the spectra indicate that all particles mainly oscillate at one specific frequency, corresponding to the harmonic oscillation frequency of one single particle inside one potential well. At a commensurability ratio of 2, the substrate allows two particles to sit inside the bottom of each potential well, and the resulting longitudinal and transverse spectra exhibit four branches in total. We find that the two moderate branches come from the harmonic oscillations of one single particle and two combined particles in the potential well. The other two branches correspond to the relative motion of the two-body structure in each potential well in the radial and azimuthal directions. The difference in the spectra between the square and triangular substrates is attributed to the anisotropy of the substrates and the resulting alignment directions of the two-body structure in each potential well.
Collapse
Affiliation(s)
- Y Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - W Li
- School of Science, Nantong University, Nantong 226019, China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Berumen J, Goree J. Frequency-dependent complex viscosity obtained for a liquid two-dimensional dusty plasma experiment. Phys Rev E 2022; 105:015209. [PMID: 35193194 DOI: 10.1103/physreve.105.015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Strongly coupled plasmas in a liquid phase can be characterized by a complex viscosity η(ω), which is a function of frequency. Data from a single experiment with dusty plasma were analyzed to compare η(ω) obtained by two fundamentally distinct methods. In a nonequilibrium method, a pair of counterpropagating laser beams, separated by a gap, applied a sinusoidal shear to a two-dimensional liquid, and η(ω) was determined using the constitutive relation. In an equilibrium method, there was no externally applied shear, so η(ω) could be calculated with a generalized Green-Kubo relation. The results for these two methods are compared for the real and imaginary parts of η(ω). For both parts, it is confirmed that the two methods yield results that agree qualitatively in their trends with frequency, with the real part diminishing with ω and the imaginary part increasing with ω, as expected for viscoelastic liquids. Quantitatively, the values of η(ω) obtained by the two methods differ slightly. For the experiment that we analyze, values for the real and imaginary parts of η(ω) are substantially greater than those reported in an earlier experiment, which we attribute to shear thinning effects in the earlier experiment. The experiment we analyze was designed to minimize shear thinning, unlike the earlier experiment.
Collapse
Affiliation(s)
- Jorge Berumen
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
11
|
Lu S, Huang D, Feng Y. Plastic strain rate quantified from dislocation dynamics in dusty plasma shear flows. Phys Rev E 2021; 103:063214. [PMID: 34271705 DOI: 10.1103/physreve.103.063214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/29/2021] [Indexed: 11/07/2022]
Abstract
Dynamics of dislocations and defects are investigated in 2D dusty plasma experiments with two counterpropagating flows. It is experimentally demonstrated that the Orowan equation is able to accurately determine the plastic strain rate from the motion of dislocations, well agreeing with the shear rate defined from the drift velocity gradient. For a higher shear rate, the studied system is in the liquidlike flow state, as a result, the determined shear rate from the Orowan equation deviates from its definition. The obtained probability distribution function of dislocations from the experiments clearly shows that the dislocation motion can be divided into the local and gliding ones. All findings above are further verified by the corresponding Langevin dynamical simulations with various levels of shear rates. The dislocation and defect analysis results from these simulations clearly indicate that the defect and dislocation dynamics in the sheared dusty plasmas clearly exhibit two stages as the shear rate increases.
Collapse
Affiliation(s)
- Shaoyu Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Gu L, Li W, Reichhardt C, Reichhardt CJO, Murillo MS, Feng Y. Continuous and discontinuous transitions in the depinning of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Phys Rev E 2021; 102:063203. [PMID: 33466093 DOI: 10.1103/physreve.102.063203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 11/07/2022]
Abstract
Langevin dynamical simulations are performed to study the depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate. From the diagnostics of the sixfold coordinated particles P_{6} and the collective drift velocity V_{x}, three different states appear, which are the pinning, disordered plastic flow, and moving ordered states. It is found that the depth of the substrate is able to modulate the properties of the depinning phase transition, based on the results of P_{6} and V_{x}, as well as the observation of hysteresis of V_{x} while increasing and decreasing the driving force monotonically. When the depth of the substrate is shallow, there are two continuous phase transitions. When the potential well depth slightly increases, the phase transition from the pinned to the disordered plastic flow states is continuous; however, the phase transition from the disordered plastic flow to the moving ordered states is discontinuous. When the substrate is even deeper, the phase transition from the pinned to the disordered plastic flow states changes to discontinuous. When the depth of the substrate further increases, as the driving force increases, the pinned state changes to the moving ordered state directly, so that the disordered plastic flow state disappears completely.
Collapse
Affiliation(s)
- L Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - W Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Huang D, Lu S, Feng Y. Determination of viscosity in shear-induced melting two-dimensional dusty plasmas using Green-Kubo relation. Phys Rev E 2021; 103:013211. [PMID: 33601509 DOI: 10.1103/physreve.103.013211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Langevin dynamical simulations of shear-induced melting two-dimensional (2D) dusty plasmas are performed to study the determination of the shear viscosity of this system. It is found that the viscosity calculated from the Green-Kubo relation, after removing the drift motion, well agrees with the viscosity definition, i.e., the ratio of the shear stress to the shear rate in the sheared region, even the shear rate is magnified ten times higher than that in experiments. The behaviors of shear stress and its autocorrelation function of shear-induced melting 2D dusty plasmas are compared with those of uniform liquids at the same temperatures, leading to the conclusion that the Green-Kubo relation is still applicable to determine the viscosity for shear-induced melting dusty plasmas.
Collapse
Affiliation(s)
- Dong Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Kananovich A, Goree J. Experimental determination of shock speed versus exciter speed in a two-dimensional dusty plasma. Phys Rev E 2020; 101:043211. [PMID: 32422787 DOI: 10.1103/physreve.101.043211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Abstract
A shock that is continuously driven by a moving exciter will propagate at a speed that depends on the exciter speed. We obtained this dependence experimentally, in a strongly coupled dusty plasma that was prepared as a single two-dimensional layer of charged microparticles. Attaining this result required an experimental advance, developing a method of driving a shock continuously, which we did using an exciter moving at a constant supersonic speed, analogous to a piston in a cylinder. The resulting compressional pulse was a shock that propagated steadily without weakening, ahead of the moving exciter. We compare our experimental results to an empirical form M_{shock}=1+sM_{exciter}, and to the prediction of a recent simulation.
Collapse
Affiliation(s)
- Anton Kananovich
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
15
|
Lin W, Murillo MS, Feng Y. Universal relationship of compression shocks in two-dimensional Yukawa systems. Phys Rev E 2020; 101:013203. [PMID: 32069524 DOI: 10.1103/physreve.101.013203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Using molecular dynamical simulations, compressional shocks in two-dimensional (2D) dusty plasmas are quantitatively investigated under various conditions. A universal relationship between the thermal and the drift velocities after shocks is discovered in 2D Yukawa systems. Using the equation of state of 2D Yukawa liquids, and the obtained pressure from the Rankine-Hugoniot relation, an analytical relation between the thermal and the drift velocities is derived, which well agrees with the discovered universal relationship for various conditions.
Collapse
Affiliation(s)
- Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
16
|
Li W, Wang K, Reichhardt C, Reichhardt CJO, Murillo MS, Feng Y. Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Phys Rev E 2019; 100:033207. [PMID: 31639889 DOI: 10.1103/physreve.100.033207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 11/07/2022]
Abstract
We investigate the depinning dynamics of two-dimensional dusty plasmas driven over one-dimensional periodic substrates using Langevin dynamical simulations. We find that, for a specific range of substrate strengths, as the external driving force increases from zero, there are three different states, which are the pinned, the disordered plastic flow, and the moving ordered states, respectively. These three states are clearly observed using different diagnostics, including the collective drift velocity, static structural measures, the particle trajectories, the mean-squared displacements, and the kinetic temperature. We compare the observed depinning dynamics here with the depinning dynamics in other systems.
Collapse
Affiliation(s)
- W Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - K Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Ghannad Z. Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids. Phys Rev E 2019; 100:033211. [PMID: 31639989 DOI: 10.1103/physreve.100.033211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
We investigate Fickian diffusion in two-dimensional (2D) Yukawa liquids using molecular dynamics simulations. We compute the self-van Hove correlation function G_{s}(r,t) and the self-intermediate scattering function F_{s}(k,t), and we compare these functions with those obtained from mean-squared displacement (MSD) using the Gaussian approximation. According to this approximation, a linear MSD with time implies a Gaussian behavior for G_{s}(r,t) and F_{s}(k,t) at all times. Surprisingly, we find that these functions deviate from Gaussian at intermediate timescales, indicating the failure of the Gaussian approximation. Furthermore, we quantify these deviations by the non-Gaussian parameter, and we find that the deviations increase when the temperature of the liquid decreases. The origin of the non-Gaussian behavior may be the heterogeneous dynamics of dust particles observed in 2D Yukawa liquids.
Collapse
Affiliation(s)
- Zahra Ghannad
- Department of Physics, Alzahra University, P.O. Box 19938-93973, Tehran, Iran
| |
Collapse
|
18
|
Yakovlev EV, Kryuchkov NP, Ovcharov PV, Pitiot K, Sapelkin AV, Yurchenko SO. Defect-governed double-step activation and directed flame fronts. Phys Rev E 2019; 100:023203. [PMID: 31574655 DOI: 10.1103/physreve.100.023203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 11/07/2022]
Abstract
Defects play a crucial role in physics of solids, affecting their mechanical, electromagnetic, and chemical properties. However, influence of thermal defects on wave propagation in exothermic reactions (flame fronts) still remains poorly understood at the molecular level. Here, we show that thermal behavior of the defects exhibits essential features of double-step exothermic reactions with preequilibrium. We use experiments with monolayer complex (dusty) plasma and find that it can show a double-step activation thermal behavior, similar to chemically reactive media. Furthermore, we demonstrate capabilities to control flame fronts using defects and the different dynamic regimes of the thermal defects in complex (dusty) plasmas, from a nonactivated one to being sound and self-activated (like in active soft matter). The results suggest that a range of challenging phenomena at the forefront of modern science (e.g., defect activation, flame front dynamics, reaction waves, etc.) can now be experimentally interrogated on a microscopic scale.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Physics Department, Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia.,Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, Troitsk, 108840 Moscow, Russia
| | - Nikita P Kryuchkov
- Physics Department, Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia.,Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, Troitsk, 108840 Moscow, Russia
| | - Pavel V Ovcharov
- Physics Department, Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Killian Pitiot
- Physics Department, Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Andrei V Sapelkin
- Department of Physics, Queen Mary University of London, E14NS London, England
| | - Stanislav O Yurchenko
- Physics Department, Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia.,Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, Troitsk, 108840 Moscow, Russia
| |
Collapse
|
19
|
Yakovlev EV, Chaudhuri M, Kryuchkov NP, Ovcharov PV, Sapelkin AV, Yurchenko SO. Experimental validation of interpolation method for pair correlations in model crystals. J Chem Phys 2019; 151:114502. [PMID: 31542035 DOI: 10.1063/1.5116176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate analysis of pair correlations in condensed matter allows us to establish relations between structures and thermodynamic properties and, thus, is of high importance for a wide range of systems, from solids to colloidal suspensions. Recently, the interpolation method (IM) that describes satisfactorily the shape of pair correlation peaks at short and at long distances has been elaborated theoretically and using molecular dynamics simulations, but it has not been verified experimentally as yet. Here, we test the IM by particle-resolved studies with colloidal suspensions and with complex (dusty) plasmas and demonstrate that, owing to its high accuracy, the IM can be used to experimentally measure parameters that describe interaction between particles in these systems. We used three- and two-dimensional colloidal crystals and monolayer complex (dusty) plasma crystals to explore suitability of the IM in systems with soft to hard-sphere-like repulsion between particles. In addition to the systems with pairwise interactions, if many-body interactions can be mapped to the pairwise ones with some effective (e.g., density-dependent) parameters, the IM could be used to obtain these parameters. The results reliably show that the IM can be effectively used for analysis of pair correlations and interactions in a wide variety of systems and therefore is of broad interest in condensed matter, complex plasma, chemical physics, physical chemistry, materials science, and soft matter.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Manis Chaudhuri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Pavel V Ovcharov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Andrei V Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London E14NS, United Kingdom
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
20
|
Wang K, Huang D, Feng Y. Shear modulus of two-dimensional Yukawa or dusty-plasma solids obtained from the viscoelasticity in the liquid state. Phys Rev E 2019; 99:063206. [PMID: 31330584 DOI: 10.1103/physreve.99.063206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/07/2022]
Abstract
Langevin dynamical simulations of two-dimensional (2D) Yukawa liquids are performed to investigate the shear modulus of 2D solid dusty plasmas. Using the known transverse sound speeds, we obtain a theoretical expression of the shear modulus of 2D Yukawa crystals as a function of the screening parameter κ, which can be used as the candidate of their shear modulus. The shear relaxation modulus G(t) of 2D Yukawa liquids is calculated from the shear stress autocorrelation function, consisting of the kinetic, potential, and cross portions. Due to their viscoelasticity, 2D Yukawa liquids exhibit the typical elastic property when the time duration is much less than the Maxwell relaxation time. As a result, the infinite frequency shear modulus G_{∞}, i.e., the shear relaxation modulus G(t) when t=0, of a 2D Yukawa liquid should be related to the shear modulus of the corresponding quenched 2D Yukawa solid (with the same κ value), with all particles suddenly frozen at their locations of the liquid state. It is found that the potential portion of the infinite frequency shear modulus for 2D Yukawa liquids at any temperature well agrees with the shear modulus of 2D Yukawa crystals with the same κ obtained from the transverse sound speeds. Thus, we find that the shear modulus of 2D Yukawa solids can be obtained from the motion of individual particles of the corresponding Yukawa liquids using their viscoelastic property.
Collapse
Affiliation(s)
- Kang Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
21
|
Kryuchkov NP, Yakovlev EV, Gorbunov EA, Couëdel L, Lipaev AM, Yurchenko SO. Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas. PHYSICAL REVIEW LETTERS 2018; 121:075003. [PMID: 30169052 DOI: 10.1103/physrevlett.121.075003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Thermoacoustic instability in a fluid monolayer complex plasma is studied for the first time. Experiments, theory, and simulations demonstrate that nonreciprocal effective interactions between particles (mediated by plasma flows) provide positive thermal feedback leading to acoustic sound amplification. The form of the generated sound spectra obtained both in experiments and simulations excellently agrees with theory, justifying thermoacoustic instability in the fluid complex plasma. The results indicate a physical analogy between collective fluctuation dynamics in reactive media and in systems with nonreciprocal effective interactions exposing an activation behavior.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5/1, 105005 Moscow, Russia
| | - Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5/1, 105005 Moscow, Russia
| | - Evgeny A Gorbunov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5/1, 105005 Moscow, Russia
| | - Lenaic Couëdel
- CNRS, Aix Marseille Université, PIIM, UMR 7345-F-13397 Marseille, France
- Physics and Engineering Physics Department, University of Saskatchewan, 116 Science Place, S7N 5E2 Saskatoon, Canada
| | - Andrey M Lipaev
- Joint Institute for High Temperatures, 125412 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5/1, 105005 Moscow, Russia
| |
Collapse
|
22
|
Feng Y, Lin W, Murillo MS. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field. Phys Rev E 2018; 96:053208. [PMID: 29347770 DOI: 10.1103/physreve.96.053208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/07/2022]
Abstract
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Collapse
Affiliation(s)
- Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
23
|
Yurchenko SO, Yakovlev EV, Couëdel L, Kryuchkov NP, Lipaev AM, Naumkin VN, Kislov AY, Ovcharov PV, Zaytsev KI, Vorob'ev EV, Morfill GE, Ivlev AV. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas. Phys Rev E 2017; 96:043201. [PMID: 29347570 DOI: 10.1103/physreve.96.043201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Collapse
Affiliation(s)
- S O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - E V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - L Couëdel
- CNRS, Aix Marseille Université, PIIM, UMR 7345, 13397 Marseille, France
| | - N P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - A M Lipaev
- Joint Institute for High Temperatures, 125412 Moscow, Russia
| | - V N Naumkin
- Joint Institute for High Temperatures, 125412 Moscow, Russia
| | - A Yu Kislov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - P V Ovcharov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - K I Zaytsev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - E V Vorob'ev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - G E Morfill
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
- Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
| | - A V Ivlev
- Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
| |
Collapse
|
24
|
Kompaneets R, Morfill GE, Ivlev AV. Wakes in complex plasmas: A self-consistent kinetic theory. Phys Rev E 2016; 93:063201. [PMID: 27415371 DOI: 10.1103/physreve.93.063201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/07/2022]
Abstract
In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential.
Collapse
Affiliation(s)
- Roman Kompaneets
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany
| | - Gregor E Morfill
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany.,BMSTU Centre for Plasma Science and Technology, Moscow, 105005, Russia
| | - Alexei V Ivlev
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany
| |
Collapse
|
25
|
Kompaneets R, Morfill GE, Ivlev AV. Interparticle Attraction in 2D Complex Plasmas. PHYSICAL REVIEW LETTERS 2016; 116:125001. [PMID: 27058083 DOI: 10.1103/physrevlett.116.125001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Collapse
Affiliation(s)
- Roman Kompaneets
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
| | - Gregor E Morfill
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
- BMSTU Centre for Plasma Science and Technology, Moscow, Russia
| | - Alexei V Ivlev
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
| |
Collapse
|
26
|
Yang C, Wang W, I L. Avalanche structural rearrangement through cracking-healing in weakly stressed cold dusty plasma liquids. Phys Rev E 2016; 93:013202. [PMID: 26871178 DOI: 10.1103/physreve.93.013202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
We experimentally investigate the spatiotemporal dynamical behaviors of the avalanche structural rearrangement through micro-cracking-healing in weakly stressed cold dusty plasma liquids, and the kinetic origins for their different spatial and temporal classifications. The crystalline ordered domains can be cracked or temporarily sustain and transfer the weak stress to remote regions for cracking-healing. It is found that cracking sites form a fractal network with cluster size following power law distribution in the xyt space. The histograms of the persistent times for sustaining regional ordered and disordered structure, the temporal cracking burst width, and quiescent time between two bursts all follow power law decays with fast descending tails. Cracking can be classified into a single temporal burst with simple line like spatial patterns and the successive cracking fluctuation with densely packed cracking clusters. For an ordered region, whether the Burgers vectors of the incoming dislocations from the boundary allow direct dislocation reduction is the key for the above two classifications through cracking a large ordered domain into medium scale corotating ordered domains or small patches. The low regional structural order at the end of a cracking burst can be regarded as an alarm for predicting the short quiescent period before the next cracking burst.
Collapse
Affiliation(s)
- Chi Yang
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 320, Republic of China
| | - Wen Wang
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 320, Republic of China
| | - Lin I
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 320, Republic of China
| |
Collapse
|