1
|
Rapacioli M, Buey MY, Spiegelman F. Addressing electronic and dynamical evolution of molecules and molecular clusters: DFTB simulations of energy relaxation in polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2024; 26:1499-1515. [PMID: 37933901 PMCID: PMC10793726 DOI: 10.1039/d3cp02852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We present a review of the capabilities of the density functional based Tight Binding (DFTB) scheme to address the electronic relaxation and dynamical evolution of molecules and molecular clusters following energy deposition via either collision or photoabsorption. The basics and extensions of DFTB for addressing these systems and in particular their electronic states and their dynamical evolution are reviewed. Applications to PAH molecules and clusters, carbonaceous systems of major interest in astrochemical/astrophysical context, are reported. A variety of processes are examined and discussed such as collisional hydrogenation, fast collisional processes and induced electronic and charge dynamics, collision-induced fragmentation, photo-induced fragmentation, relaxation in high electronic states, electronic-to-vibrational energy conversion and statistical versus non-statistical fragmentation. This review illustrates how simulations may help to unravel different relaxation mechanisms depending on various factors such as the system size, specific electronic structure or excitation conditions, in close connection with experiments.
Collapse
Affiliation(s)
- Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Maysa Yusef Buey
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
2
|
Stockett MH, Bull JN, Buntine JT, Carrascosa E, Ji M, Kono N, Schmidt HT, Zettergren H. Unimolecular fragmentation and radiative cooling of isolated PAH ions: A quantitative study. J Chem Phys 2020; 153:154303. [PMID: 33092387 DOI: 10.1063/5.0027773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved spontaneous and laser-induced unimolecular fragmentation of perylene cations (C20H12 +) has been measured on timescales up to 2 s in a cryogenic electrostatic ion beam storage ring. We elaborate a quantitative model, which includes fragmentation in competition with radiative cooling via both vibrational and electronic (recurrent fluorescence) de-excitation. Excellent agreement with experimental results is found when sequential fragmentation of daughter ions co-stored with the parent perylene ions is included in the model. Based on the comparison of the model to experiment, we constrain the oscillator strength of the D1 → D0 emissive electronic transition in perylene (fRF = 0.055 ± 0.011), as well as the absolute absorption cross section of the D5 ← D0 excitation transition (σabs > 670 Mb). The former transition is responsible for the laser-induced and recurrent fluorescence of perylene, and the latter is the most prominent in the absorption spectrum. The vibrational cooling rate is found to be consistent with the simple harmonic cascade approximation. Quantitative experimental benchmarks of unimolecular processes in polycyclic aromatic hydrocarbon ions like perylene are important for refining astrochemical models.
Collapse
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Jack T Buntine
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - MingChao Ji
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Naoko Kono
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Henning T Schmidt
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
3
|
Diedhiou M, West BJ, Bouwman J, Mayer PM. Ion Dissociation Dynamics of 1,2,3,4-Tetrahydronaphthalene: Tetralin as a Test Case For Hydrogenated Polycyclic Aromatic Hydrocarbons. J Phys Chem A 2019; 123:10885-10892. [PMID: 31794665 DOI: 10.1021/acs.jpca.9b09511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unimolecular dissociation of ionized tetralin was probed by tandem mass spectrometry, imaging photoelectron photoion coincidence (iPEPICO) spectroscopy, and theory. The major reactions observed were the loss of the hydrocarbons CH3•, C2H4, and C3H5• together with H•-atom loss. RRKM modeling of the iPEPICO data suggested a two-well potential energy surface. Ionized tetralin can lose all four neutrals via H-shift and ring-opening reactions or CH3• and C2H4 after interconversion to the 1-methylindane ion, a process similar to that found for ionized 1,2-dihydronaphthalene (isomerizing to form the 1-methylindene ion structure). This was confirmed at the B3LYP/6-31+G(d,p) level of theory, and potential mechanisms for all reactions are described. The ionization energy of tetralin was established from the threshold photoelectron spectrum to be 8.46 ± 0.01 eV.
Collapse
Affiliation(s)
- Malick Diedhiou
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada K1N 6N5
| | - Brandi J West
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada K1N 6N5
| | - Jordy Bouwman
- Laboratory for Astrophysics, Leiden Observatory , Leiden University , P.O. Box 9513, 2300RA Leiden , The Netherlands
| | - Paul M Mayer
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada K1N 6N5
| |
Collapse
|
4
|
Stockett MH, Björkhage M, Cederquist H, Schmidt HT, Zettergren H. Storage time dependent photodissociation action spectroscopy of polycyclic aromatic hydrocarbon cations in the cryogenic electrostatic storage ring DESIREE. Faraday Discuss 2019; 217:126-137. [DOI: 10.1039/c8fd00161h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intrinsic absorption profile and radiative cooling rate of coronene cations are reported.
Collapse
|
5
|
Rapacioli M, Cazaux S, Foley N, Simon A, Hoekstra R, Schlathölter T. Atomic hydrogen interactions with gas-phase coronene cations: hydrogenation versus fragmentation. Phys Chem Chem Phys 2018; 20:22427-22438. [PMID: 29947389 DOI: 10.1039/c8cp03024c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sequential hydrogenation of polycyclic aromatic hydrocarbon (PAH) cations drives a gradual transition from a planar to a puckered geometry and from an aromatic to an aliphatic electronic structure. The resulting H-induced weakening of the molecular structure together with the exothermic nature of the consecutive H-attachment processes can lead to substantial molecular fragmentation. We have studied H attachment to gas-phase coronene cations in a radiofrequency ion trap using tandem mass spectrometry. With increasing hydrogenation, C2Hi loss and multifragmentation are identified as main de-excitation channels. To understand the dependence of both channels on H-exposure time, we have simulated the molecular stability and fragmentation channels of hydrogenated PAHs using a molecular dynamics approach employing potential energies determined by a density functional based tight binding method. As the coronene fragmentation patterns depend on the balance between energy deposition by H-attachment and the extent of cooling in between subsequent attachment processes, we investigate several scenarios for the energy distribution of hydrogenated PAHs. Good agreement between experiment and simulation is reached, when realistic energy distributions are considered.
Collapse
Affiliation(s)
- Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
6
|
Tenorio BNC, Oliveira RR, Nascimento MAC, Rocha AB. Coupled Cluster and Time-Dependent Density Functional Theory Description of Inner Shell Photoabsorption Cross Sections of Molecules. J Chem Theory Comput 2018; 14:5324-5338. [DOI: 10.1021/acs.jctc.8b00375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Ricardo Rodrigues Oliveira
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Marco Antonio Chaer Nascimento
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Alexandre Braga Rocha
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
7
|
Domaracka A, Delaunay R, Mika A, Gatchell M, Zettergren H, Cederquist H, Rousseau P, Huber BA. Ion collision-induced chemistry in pure and mixed loosely bound clusters of coronene and C 60 molecules. Phys Chem Chem Phys 2018; 20:15052-15060. [PMID: 29790511 DOI: 10.1039/c8cp01179f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ionization, fragmentation and molecular growth have been studied in collisions of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by ions that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating collisions may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-atoms often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-atoms are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.
Collapse
Affiliation(s)
- Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
West B, Rodriguez Castillo S, Sit A, Mohamad S, Lowe B, Joblin C, Bodi A, Mayer PM. Unimolecular reaction energies for polycyclic aromatic hydrocarbon ions. Phys Chem Chem Phys 2018; 20:7195-7205. [PMID: 29480289 PMCID: PMC6031295 DOI: 10.1039/c7cp07369k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging photoelectron photoion coincidence spectroscopy was employed to explore the unimolecular dissociation of the ionized polycyclic aromatic hydrocarbons (PAHs) acenaphthylene, fluorene, cyclopenta[d,e,f]phenanthrene, pyrene, perylene, fluoranthene, dibenzo[a,e]pyrene, dibenzo[a,l]pyrene, coronene and corannulene. The primary reaction is always hydrogen atom loss, with the smaller species also exhibiting loss of C2H2 to varying extents. Combined with previous work on smaller PAH ions, trends in the reaction energies (E0) for loss of H from sp2-C and sp3-C centres, along with hydrocarbon molecule loss were found as a function of the number of carbon atoms in the ionized PAHs ranging in size from naphthalene to coronene. In the case of molecules which possessed at least one sp3-C centre, the activation energy for the loss of an H atom from this site was 2.34 eV, with the exception of cyclopenta[d,e,f]phenanthrene (CPP) ions, for which the E0 was 3.44 ± 0.86 eV due to steric constraints. The hydrogen loss from PAH cations and from their H-loss fragments exhibits two trends, depending on the number of unpaired electrons. For the loss of the first hydrogen atom, the energy is consistently ca. 4.40 eV, while the threshold to lose the second hydrogen atom is much lower at ca. 3.16 eV. The only exception was for the dibenzo[a,l]pyrene cation, which has a unique structure due to steric constraints, resulting in a low H loss reaction energy of 2.85 eV. If C2H2 is lost directly from the precursor cation, the energy required for this dissociation is 4.16 eV. No other fragmentation channels were observed over a large enough sample set for trends to be extrapolated, though data on CH3 and C4H2 loss obtained in previous studies is included for completeness. The dissociation reactions were also studied by collision induced dissociation after ionization by atmospheric pressure chemical ionization. When modeled with a simple temperature-based theory for the post-collision internal energy distribution, there was reasonable agreement between the two sets of data.
Collapse
Affiliation(s)
- Brandi West
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hydrogenated Benzene in Circumstellar Environments: Insights into the Photostability of Super-hydrogenated PAHs. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aaa977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Vala M, Oomens J, Berden G. Structure and Dissociation Pathways of Protonated Tetralin (1,2,3,4-Tetrahydronaphthalene). J Phys Chem A 2017; 121:4606-4612. [PMID: 28574713 DOI: 10.1021/acs.jpca.7b01858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The infrared multiple-photon dissociation (IRMPD) spectrum of protonated tetralin (1,2,3,4-tetrahydronaphthalene, THN) has been recorded using an infrared free electron laser coupled to a Fourier transform ion cyclotron mass spectrometer. IR-induced fragmentation of the protonated parent [THN + H] +, m/z 133, yielded a single fragment ion at m/z 91. No evidence for fragment ions at m/z 131 or 132 was observed, indicating that protonated THN ejects neither atomic H nor molecular H2. Comparison of the experimental spectrum with density functional calculations (B3LYP/6-311++G(d,p)) of the two possible protonated isomers identifies a preference for the position of protonation. Possible decomposition pathways starting from both [THN + H(5)]+ and [THN + H(6)]+ are investigated. The potential energy profiles computed for these decomposition routes reveal that (1) the m/z 91 ionic product resembles the benzylium ion, but with the extra hydrogen and the methylene substituents in various ortho, meta, and para conformations around the aromatic ring and that (2) the decomposition process involving the [THN + H(6)]+ isomer is predominant, while the one involving the [THN + H(5)]+ may play a smaller role. Potential energy pathways from the initial decomposition product(s) to the benzylium and tropylium ions have also been computed. Given the relatively low barriers to these ions, it is concluded that the benzylium ion and, with sufficient activation, the tropylium ion plus neutral propene are the final products.
Collapse
Affiliation(s)
- Martin Vala
- Department of Chemistry and Center for Chemical Physics, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Jos Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, NL-6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, NL-6525 ED Nijmegen, The Netherlands
| |
Collapse
|
11
|
PHOTO-STABILITY OF SUPER-HYDROGENATED PAHs DETERMINED BY ACTION SPECTROSCOPY EXPERIMENTS. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/832/1/24] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
The sequence to hydrogenate coronene cations: A journey guided by magic numbers. Sci Rep 2016; 6:19835. [PMID: 26821925 PMCID: PMC4731771 DOI: 10.1038/srep19835] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
Collapse
|
13
|
Stockett MH, Gatchell M, Chen T, de Ruette N, Giacomozzi L, Wolf M, Schmidt HT, Zettergren H, Cederquist H. Threshold energies for single-carbon knockout from polycyclic aromatic hydrocarbons. J Phys Chem Lett 2015; 6:4504-4509. [PMID: 26523738 DOI: 10.1021/acs.jpclett.5b02080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAH) cations as functions of He–PAH center-of-mass collision energy in the 10–200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of EthExp = 32.5 ± 0.4 eV and EthMD = 41.0 ± 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of TdispSE = 23.3 ± 0.3 eV and TdispMD = 27.0 ± 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (Tdisp = 23.6 eV).
Collapse
Affiliation(s)
- M H Stockett
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| | - M Gatchell
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - T Chen
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - N de Ruette
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - L Giacomozzi
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - M Wolf
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - H T Schmidt
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - H Zettergren
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| | - H Cederquist
- Department of Physics, Stockholm University , Stockholm SE-106 91, Sweden
| |
Collapse
|
14
|
Reitsma G, Boschman L, Deuzeman MJ, Hoekstra S, Hoekstra R, Schlathölter T. Near edge X-ray absorption mass spectrometry on coronene. J Chem Phys 2015; 142:024308. [DOI: 10.1063/1.4905471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. Reitsma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - L. Boschman
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
- Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands
| | - M. J. Deuzeman
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - S. Hoekstra
- Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
| | - R. Hoekstra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - T. Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
15
|
Stockett MH, Gatchell M, Alexander JD, Bērziņš U, Chen T, Farid K, Johansson A, Kulyk K, Rousseau P, Støchkel K, Adoui L, Hvelplund P, Huber BA, Schmidt HT, Zettergren H, Cederquist H. Fragmentation of anthracene C14H10, acridine C13H9N and phenazine C12H8N2ions in collisions with atoms. Phys Chem Chem Phys 2014; 16:21980-7. [DOI: 10.1039/c4cp03293d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|