1
|
Paul S, Dhar A, Chaudhuri D. Dynamical crossovers and correlations in a harmonic chain of active particles. SOFT MATTER 2024; 20:8638-8653. [PMID: 39435525 DOI: 10.1039/d4sm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We explore the dynamics of a tracer in an active particle harmonic chain, investigating the influence of interactions. Our analysis involves calculating mean-squared displacements (MSDs) and space-time correlations through Green's function techniques and numerical simulations. Depending on chain characteristics, i.e., different time scales determined by interaction stiffness and persistence of activity, tagged-particle MSDs exhibit ballistic, diffusive, and single-file diffusion (SFD) scaling over time, with crossovers explained by our analytic expressions. Our results reveal transitions in bulk particle displacement distributions from an early-time bimodal to late-time Gaussian, passing through regimes of unimodal distributions with finite support and negative excess kurtosis and longer-tailed distributions with positive excess kurtosis. The distributions exhibit data collapse, aligning with ballistic, diffusive, and SFD scaling in the appropriate time regimes. However, at much longer times, the distributions become Gaussian. Finally, we derive analytic expressions for steady-state static and dynamic two-point displacement correlations. We verify these from simulations and highlight the differences from the equilibrium results.
Collapse
Affiliation(s)
- Subhajit Paul
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India.
| | - Abhishek Dhar
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
2
|
Sorkin B, Dean DS. Uphill Drift in the Absence of Current in Single-File Diffusion. PHYSICAL REVIEW LETTERS 2024; 133:107101. [PMID: 39303227 DOI: 10.1103/physrevlett.133.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Single-file diffusion is a paradigmatic model for the transport of Brownian colloidal particles in narrow one-dimensional channels, such as those found in certain porous media, where the particles cannot cross each other. We consider a system where a different external uniform potential is present to the right and left of an origin. For example, this is the case when two channels meeting at the origin have different radii. In equilibrium, the chemical potential of the particles are equal, the density is thus lower in the region with the higher potential, and by definition there is no net current in the system. Remarkably, a single-file tracer particle initially located at the origin, with position denoted by Y(t), exhibits an average uphill drift toward the region of highest potential. This drift has the late time behavior ⟨Y(t)⟩=Ct^{1/4}, where the prefactor C depends on the initial particle arrangement. This surprising result is shown analytically by computing the first two moments of Y(t) through a simple and physically illuminating method, and also via extensive numerical simulations.
Collapse
Affiliation(s)
| | - David S Dean
- Université Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, Université Bordeaux, F-33400 Talence, France
| |
Collapse
|
3
|
Grabsch A, Bénichou O. Tracer Diffusion beyond Gaussian Behavior: Explicit Results for General Single-File Systems. PHYSICAL REVIEW LETTERS 2024; 132:217101. [PMID: 38856256 DOI: 10.1103/physrevlett.132.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Single-file systems, in which particles diffuse in narrow channels while not overtaking each other, is a fundamental model for the tracer subdiffusion observed in confined geometries, such as in zeolites or carbon nanotubes. Twenty years ago, the mean squared displacement of a tracer was determined at large times, for any diffusive single-file system. Since then, for a general single-file system, even the determination of the fourth cumulant, which probes the deviation from Gaussianity, has remained an open question. Here, we fill this gap and provide an explicit formula for the fourth cumulant of an arbitrary single-file system. Our approach also allows us to quantify the perturbation induced by the tracer on its environment, encoded in the correlation profiles. These explicit results constitute a first step towards obtaining a closed equation for the correlation profiles for arbitrary single-file systems.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Santra S, Singh P. Exact fluctuation and long-range correlations in a single-file model under resetting. Phys Rev E 2024; 109:034123. [PMID: 38632800 DOI: 10.1103/physreve.109.034123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/24/2024] [Indexed: 04/19/2024]
Abstract
Resetting is a renewal mechanism in which a process is intermittently repeated after a random or fixed time. This simple act of stop and repeat profoundly influences the behavior of a system as exemplified by the emergence of nonequilibrium properties and expedition of search processes. Herein we explore the ramifications of stochastic resetting in the context of a single-file system called random average process (RAP) in one dimension. In particular, we focus on the dynamics of tracer particles and analytically compute the variance, equal time correlation, autocorrelation, and unequal time correlation between the positions of different tracer particles. Our study unveils that resetting gives rise to rather different behaviors depending on whether the particles move symmetrically or asymmetrically. For the asymmetric case, the system for instance exhibits a long-range correlation which is not seen in absence of the resetting. Similarly, in contrast to the reset-free RAP, the variance shows distinct scalings for symmetric and asymmetric cases. While for the symmetric case, it decays (towards its steady value) as ∼e^{-rt}/sqrt[t], we find ∼te^{-rt} decay for the asymmetric case (r being the resetting rate). Finally, we examine the autocorrelation and unequal time correlation in the steady state and demonstrate that they obey interesting scaling forms at late times. All our analytical results are substantiated by extensive numerical simulations.
Collapse
Affiliation(s)
- Saikat Santra
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Prashant Singh
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Grabsch A, Berlioz T, Rizkallah P, Illien P, Bénichou O. From Particle Currents to Tracer Diffusion: Universal Correlation Profiles in Single-File Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:037102. [PMID: 38307067 DOI: 10.1103/physrevlett.132.037102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass each other. This constraint leads to strong correlations between the particles, described by correlation profiles, which measure the correlation between a generic observable and the density of particles at a given position and time. They have recently been shown to play a central role in single-file systems. Up to now, these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line, with a general individual stochastic dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate our approach by the study of the integrated current of particles through the origin, and apply our results to representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other observables.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Théotim Berlioz
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Grabsch A, Rizkallah P, Illien P, Bénichou O. Driven Tracer in the Symmetric Exclusion Process: Linear Response and Beyond. PHYSICAL REVIEW LETTERS 2023; 130:020402. [PMID: 36706397 DOI: 10.1103/physrevlett.130.020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Banerjee T, Jack RL, Cates ME. Role of initial conditions in one-dimensional diffusive systems: Compressibility, hyperuniformity, and long-term memory. Phys Rev E 2022; 106:L062101. [PMID: 36671167 DOI: 10.1103/physreve.106.l062101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
We analyze the long-lasting effects of initial conditions on dynamical fluctuations in one-dimensional diffusive systems. We consider the mean-squared displacement of tracers in homogeneous systems with single-file diffusion, and current fluctuations for noninteracting diffusive particles. In each case we show analytically that the long-term memory of initial conditions is mediated by a single static quantity: a generalized compressibility that quantifies the density fluctuations of the initial state. We thereby identify a universality class of hyperuniform initial states whose dynamical variances coincide with the quenched cases studied previously, alongside a continuous family of other classes among which equilibrated (or annealed) initial conditions are but one member. We verify our predictions through extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Tirthankar Banerjee
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
8
|
Poncet A, Grabsch A, Bénichou O, Illien P. Exact time dependence of the cumulants of a tracer position in a dense lattice gas. Phys Rev E 2022; 105:054139. [PMID: 35706275 DOI: 10.1103/physreve.105.054139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We develop a general method to calculate the exact time dependence of the cumulants of the position of a tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate the cumulant-generating function associated with the position of a tagged particle at arbitrary time, and at leading order in the density of vacancies on the lattice. In particular, our approach gives access to the short-time dynamics of the cumulants of the tracer position, a regime in which few results are known. The generality of our approach is demonstrated by showing that it goes beyond the case of a symmetric 1D random walk and covers the important situations of (1) a biased tracer, (2) comblike structures, and (3) d-dimensional situations.
Collapse
Affiliation(s)
- Alexis Poncet
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Poncet A, Grabsch A, Illien P, Bénichou O. Generalized Correlation Profiles in Single-File Systems. PHYSICAL REVIEW LETTERS 2021; 127:220601. [PMID: 34889628 DOI: 10.1103/physrevlett.127.220601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Single-file diffusion refers to the motion in narrow channels of particles which cannot bypass each other, and leads to tracer subdiffusion. Most approaches to this celebrated many-body problem were restricted to the description of the tracer only. Here, we go beyond this standard description by introducing and providing analytical results for generalized correlation profiles (GCPs) in the frame of the tracer. In addition to controlling the statistical properties of the tracer, these quantities fully characterize the correlations between the tracer position and the bath particles density. Considering the hydrodynamic limit of the problem, we determine the scaling form of the GCPs with space and time, and unveil a nonmonotonic dependence with the distance to the tracer despite the absence of any asymmetry. Our analytical approach provides several exact results for the GCPs for paradigmatic models of single-file diffusion, such as Brownian particles with hardcore repulsion, the symmetric exclusion process and the random average process. The range of applicability of our approach is further illustrated by considering (i) extensions to general interactions between particles, (ii) the out-of-equilibrium situation of an initial step of density, and (iii) beyond the hydrodynamic limit, the GCPs at arbitrary time in the dense limit.
Collapse
Affiliation(s)
- Alexis Poncet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
10
|
Dolezal J, Jack RL. Long-ranged correlations in large deviations of local clustering. Phys Rev E 2021; 103:052132. [PMID: 34134232 DOI: 10.1103/physreve.103.052132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
In systems of diffusing particles, we investigate large deviations of a time-averaged measure of clustering around one particle. We focus on biased ensembles of trajectories, which realize large-deviation events. The bias acts on a single particle, but elicits a response that spans the whole system. We analyze this effect through the lens of macroscopic fluctuation theory, focusing on the coupling of the bias to hydrodynamic modes. This explains that the dynamical free energy has nontrivial scaling relationships with the system size, in 1 and 2 spatial dimensions. We show that the long-ranged response to a bias on one particle also has consequences when biasing two particles.
Collapse
Affiliation(s)
- Jakub Dolezal
- DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Poncet A, Bénichou O, Illien P. Cumulant generating functions of a tracer in quenched dense symmetric exclusion processes. Phys Rev E 2021; 103:L040103. [PMID: 34005907 DOI: 10.1103/physreve.103.l040103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
The symmetric exclusion process (SEP), where particles hop on a one-dimensional lattice with the restriction that there can only be one particle per site, is a paradigmatic model of interacting particle systems. Recently, it has been shown that the nature of the initial conditions-annealed or quenched-has a quantitative impact on the long-time properties of tracer diffusion. However, so far, the cumulant generating function in the quenched case was only determined in the low-density limit and for the specific case of a half-filled system. Here, we derive it in the opposite dense limit with quenched initial conditions. Importantly, our approach also allows us to consider the nonequilibrium situations of (i) a biased tracer in the SEP and (ii) a symmetric tracer in a step of density. In the former situation, we show that the initial conditions have a striking impact, and change the very dependence of the cumulants on the bias.
Collapse
Affiliation(s)
- Alexis Poncet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Wang W, Höll M, Barkai E. Large deviations of the ballistic Lévy walk model. Phys Rev E 2020; 102:052115. [PMID: 33327186 DOI: 10.1103/physreve.102.052115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
We study the ballistic Lévy walk stemming from an infinite mean traveling time between collision events. Our study focuses on the density of spreading particles all starting from a common origin, which is limited by a "light" cone -v_{0}t<x<v_{0}t. In particular we study this density close to its maximum in the vicinity of the light cone. The spreading density follows the Lamperti-arcsine law describing typical fluctuations. However, this law blows up in the vicinity of the spreading horizon, which is nonphysical in the sense that any finite-time observation will never diverge. We claim that one can find two laws for the spatial density: The first one is the mentioned Lamperti-arcsine law describing the central part of the distribution, and the second is an infinite density illustrating the dynamics for x≃v_{0}t. We identify the relationship between a large position and the longest traveling time describing the single big jump principle. From the renewal theory we find that the distribution of rare events of the position is related to the derivative of the average of the number of renewals at a short "time" using a rate formalism.
Collapse
Affiliation(s)
- Wanli Wang
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Marc Höll
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
13
|
Dolai P, Das A, Kundu A, Dasgupta C, Dhar A, Kumar KV. Universal scaling in active single-file dynamics. SOFT MATTER 2020; 16:7077-7087. [PMID: 32657314 DOI: 10.1039/d0sm00687d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the single-file dynamics of three classes of active particles: run-and-tumble particles, active Brownian particles and active Ornstein-Uhlenbeck particles. At high activity values, the particles, interacting via purely repulsive and short-ranged forces, aggregate into several motile and dynamical clusters of comparable size, and do not display bulk phase-segregation. In this dynamical steady-state, we find that the cluster size distribution of these aggregates is a scaled function of the density and activity parameters across the three models of active particles with the same scaling function. The velocity distribution of these motile clusters is non-Gaussian. We show that the effective dynamics of these clusters can explain the observed emergent scaling of the mean-squared displacement of tagged particles for all the three models with identical scaling exponents and functions. Concomitant with the clustering seen at high activities, we observe that the static density correlation function displays rich structures, including multiple peaks that are reminiscent of particle clustering induced by effective attractive interactions, while the dynamical variant shows non-diffusive scaling. Our study reveals a universal scaling behavior in the single-file dynamics of interacting active particles.
Collapse
Affiliation(s)
- Pritha Dolai
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Hesaraghatta Hobli, Bengaluru North, Bangalore, Karnataka, India560089.
| | | | | | | | | | | |
Collapse
|
14
|
Large Deviations for Continuous Time Random Walks. ENTROPY 2020; 22:e22060697. [PMID: 33286470 PMCID: PMC7517236 DOI: 10.3390/e22060697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Recently observation of random walks in complex environments like the cell and other glassy systems revealed that the spreading of particles, at its tails, follows a spatial exponential decay instead of the canonical Gaussian. We use the widely applicable continuous time random walk model and obtain the large deviation description of the propagator. Under mild conditions that the microscopic jump lengths distribution is decaying exponentially or faster i.e., Lévy like power law distributed jump lengths are excluded, and that the distribution of the waiting times is analytical for short waiting times, the spreading of particles follows an exponential decay at large distances, with a logarithmic correction. Here we show how anti-bunching of jump events reduces the effect, while bunching and intermittency enhances it. We employ exact solutions of the continuous time random walk model to test the large deviation theory.
Collapse
|
15
|
Barkai E, Burov S. Packets of Diffusing Particles Exhibit Universal Exponential Tails. PHYSICAL REVIEW LETTERS 2020; 124:060603. [PMID: 32109131 DOI: 10.1103/physrevlett.124.060603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Brownian motion is a Gaussian process described by the central limit theorem. However, exponential decays of the positional probability density function P(X,t) of packets of spreading random walkers, were observed in numerous situations that include glasses, live cells, and bacteria suspensions. We show that such exponential behavior is generally valid in a large class of problems of transport in random media. By extending the large deviations approach for a continuous time random walk, we uncover a general universal behavior for the decay of the density. It is found that fluctuations in the number of steps of the random walker, performed at finite time, lead to exponential decay (with logarithmic corrections) of P(X,t). This universal behavior also holds for short times, a fact that makes experimental observations readily achievable.
Collapse
Affiliation(s)
- Eli Barkai
- Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Stanislav Burov
- Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
16
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Tracer diffusion in crowded narrow channels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:443001. [PMID: 30211693 DOI: 10.1088/1361-648x/aae13a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-core particles with stochastic dynamics, which are confined to narrow channels-single-files, comb-like structures and quasi-one-dimensional channels with the width equal to several particle diameters. We show that in such geometries a surprisingly rich, sometimes even counter-intuitive, behaviour emerges, which is absent in unbounded systems. This is well-documented for the anomalous diffusion in single-files. Less known is the anomalous dynamics of a tracer particle in crowded branching single-files-comb-like structures, where several kinds of anomalous regimes take place. In narrow channels, which are broader than single-files, one encounters a wealth of anomalous behaviours in the case where the tracer particle is subject to a regular external bias: here, one observes an anomaly in the temporal evolution of the tracer particle velocity, super-diffusive at transient stages, and ultimately a giant diffusive broadening of fluctuations in the position of the tracer particle, as well as spectacular multi-tracer effects of self-clogging of narrow channels. Interactions between a biased tracer particle and a confined crowded environment also produce peculiar patterns in the out-of-equilibrium distribution of the environment particles, very different from the ones appearing in unbounded systems. For moderately dense systems, a surprising effect of a negative differential mobility takes place, such that the velocity of a biased tracer particle can be a non-monotonic function of the force. In some parameter ranges, both the velocity and the diffusion coefficient of a biased tracer particle can be non-monotonic functions of the density. We also survey different results obtained for a tracer particle diffusion in unbounded systems, which will permit a reader to have an exhaustively broad picture of the tracer diffusion in crowded environments.
Collapse
Affiliation(s)
- O Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
17
|
Aghion E, Kessler DA, Barkai E. Large Fluctuations for Spatial Diffusion of Cold Atoms. PHYSICAL REVIEW LETTERS 2017; 118:260601. [PMID: 28707920 DOI: 10.1103/physrevlett.118.260601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density P_{t}(x) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.
Collapse
Affiliation(s)
- Erez Aghion
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - David A Kessler
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
18
|
Imamura T, Mallick K, Sasamoto T. Large Deviations of a Tracer in the Symmetric Exclusion Process. PHYSICAL REVIEW LETTERS 2017; 118:160601. [PMID: 28474952 DOI: 10.1103/physrevlett.118.160601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 06/07/2023]
Abstract
The one-dimensional symmetric exclusion process, the simplest interacting particle process, is a lattice gas made of particles that hop symmetrically on a discrete line respecting hard-core exclusion. The system is prepared on the infinite lattice with a step initial profile with average densities ρ_{+} and ρ_{-} on the right and on the left of the origin. When ρ_{+}=ρ_{-}, the gas is at equilibrium and undergoes stationary fluctuations. When these densities are unequal, the gas is out of equilibrium and will remain so forever. A tracer, or a tagged particle, is initially located at the boundary between the two domains; its position X_{t} is a random observable in time that carries information on the nonequilibrium dynamics of the whole system. We derive an exact formula for the cumulant generating function and the large deviation function of X_{t} in the long-time limit and deduce the full statistical properties of the tracer's position. The equilibrium fluctuations of the tracer's position, when the density is uniform, are obtained as an important special case.
Collapse
Affiliation(s)
- Takashi Imamura
- Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kirone Mallick
- Institut de Physique Théorique, CEA Saclay and URA 2306, CNRS, 91191 Gif-sur-Yvette cedex, France
| | - Tomohiro Sasamoto
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
19
|
Kundu A, Dhar A. Equilibrium dynamical correlations in the Toda chain and other integrable models. Phys Rev E 2016; 94:062130. [PMID: 28085483 DOI: 10.1103/physreve.94.062130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 06/06/2023]
Abstract
We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.
Collapse
Affiliation(s)
- Aritra Kundu
- International Centre for Theoretical Sciences (TIFR), Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru-560 089, India
| | - Abhishek Dhar
- International Centre for Theoretical Sciences (TIFR), Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru-560 089, India
| |
Collapse
|
20
|
Leibovich N, Dechant A, Lutz E, Barkai E. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise. Phys Rev E 2016; 94:052130. [PMID: 27967149 DOI: 10.1103/physreve.94.052130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 06/06/2023]
Abstract
The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.
Collapse
Affiliation(s)
- N Leibovich
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
| | - A Dechant
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - E Lutz
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - E Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
21
|
Mahakrishnan S, Chakraborty S, Vijay A. Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory. J Phys Chem B 2016; 120:9608-20. [PMID: 27552086 DOI: 10.1021/acs.jpcb.6b06380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.
Collapse
Affiliation(s)
- Sathiya Mahakrishnan
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - Amrendra Vijay
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
22
|
Chatterjee R, Chatterjee S, Pradhan P. Symmetric exclusion processes on a ring with moving defects. Phys Rev E 2016; 93:062124. [PMID: 27415225 DOI: 10.1103/physreve.93.062124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/07/2022]
Abstract
We study symmetric simple exclusion processes (SSEP) on a ring in the presence of uniformly moving multiple defects or disorders-a generalization of the model we proposed earlier [Phys. Rev. E 89, 022138 (2014)PLEEE81539-375510.1103/PhysRevE.89.022138]. The defects move with uniform velocity and change the particle hopping rates locally. We explore the collective effects of the defects on the spatial structure and transport properties of the system. We also introduce an SSEP with ordered sequential (sitewise) update and elucidate the close connection with our model.
Collapse
Affiliation(s)
- Rakesh Chatterjee
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
23
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Diffusion and Subdiffusion of Interacting Particles on Comblike Structures. PHYSICAL REVIEW LETTERS 2015; 115:220601. [PMID: 26650285 DOI: 10.1103/physrevlett.115.220601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamics of a tracer particle (TP) on a comb lattice populated by randomly moving hard-core particles in the dense limit. We first consider the case where the TP is constrained to move on the backbone of the comb only. In the limit of high density of the particles, we present exact analytical results for the cumulants of the TP position, showing a subdiffusive behavior ∼t^{3/4}. At longer times, a second regime is observed where standard diffusion is recovered, with a surprising nonanalytical dependence of the diffusion coefficient on the particle density. When the TP is allowed to visit the teeth of the comb, based on a mean-field-like continuous time random walk description, we unveil a rich and complex scenario with several successive subdiffusive regimes, resulting from the coupling between the geometrical constraints of the comb lattice and particle interactions. In this case, remarkably, the presence of hard-core interactions asymptotically speeds up the TP motion along the backbone of the structure.
Collapse
Affiliation(s)
- O Bénichou
- Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005 Paris, France
| | - P Illien
- Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005 Paris, France
| | - G Oshanin
- Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005 Paris, France
| | - A Sarracino
- Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005 Paris, France
| | - R Voituriez
- Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005 Paris, France
| |
Collapse
|
24
|
Leibovich N, Barkai E. Aging Wiener-Khinchin Theorem. PHYSICAL REVIEW LETTERS 2015; 115:080602. [PMID: 26340172 DOI: 10.1103/physrevlett.115.080602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 06/05/2023]
Abstract
The Wiener-Khinchin theorem shows how the power spectrum of a stationary random signal I(t) is related to its correlation function ⟨I(t)I(t+τ)⟩. We consider nonstationary processes with the widely observed aging correlation function ⟨I(t)I(t+τ)⟩∼t(γ)ϕ(EA)(τ/t) and relate it to the sample spectrum. We formulate two aging Wiener-Khinchin theorems relating the power spectrum to the time- and ensemble-averaged correlation functions, discussing briefly the advantages of each. When the scaling function ϕ(EA)(x) exhibits a nonanalytical behavior in the vicinity of its small argument we obtain the aging 1/f-type of spectrum. We demonstrate our results with three examples: blinking quantum dots, single-file diffusion, and Brownian motion in a logarithmic potential, showing that our approach is valid for a wide range of physical mechanisms.
Collapse
Affiliation(s)
- N Leibovich
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
| | - E Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
25
|
Lacoste D, Lomholt MA. Stochastic thermodynamics of a tagged particle within a harmonic chain. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022114. [PMID: 25768465 DOI: 10.1103/physreve.91.022114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 06/04/2023]
Abstract
We study the stochastic thermodynamics of an overdamped harmonic chain, which can be viewed equivalently as a one-dimensional Rouse chain or as an approximate model of single file diffusion. We discuss mainly two levels of description of this system: the Markovian level for which the trajectories of all the particles of the chain are known and the non-Markovian level in which only the motion of a tagged particle is available. For each case, we analyze the energy dissipation and its dependence on initial conditions. Surprisingly, we find that the average coarse-grained entropy production rate can become transiently negative when an oscillating force is applied to the tagged particle. This occurs due to memory effects as shown in a framework based on path integrals or on a generalized Langevin equation.
Collapse
Affiliation(s)
- David Lacoste
- Laboratoire de Physico-Chimie Théorique - UMR CNRS Gulliver 7083, PSL Research University, ESPCI, 10 rue Vauquelin, F-75231 Paris, France
| | - Michael A Lomholt
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|