1
|
Klebel-Knobloch B, Tabiś W, Gala MA, Barišić OS, Sunko DK, Barišić N. Transport properties and doping evolution of the Fermi surface in cuprates. Sci Rep 2023; 13:13562. [PMID: 37604843 PMCID: PMC10442347 DOI: 10.1038/s41598-023-39813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
Measured transport properties of three representative cuprates are reproduced within the paradigm of two electron subsystems, itinerant and localized. The localized subsystem evolves continuously from the Cu 3d[Formula: see text] hole at half-filling and corresponds to the (pseudo)gapped parts of the Fermi surface. The itinerant subsystem is observed as a pure Fermi liquid (FL) with material-independent universal mobility across the doping/temperature phase diagram. The localized subsystem affects the itinerant one in our transport calculations solely by truncating the textbook FL integrals to the observed (doping- and temperature-dependent) Fermi arcs. With this extremely simple picture, we obtain the measured evolution of the resistivity and Hall coefficients in all three cases considered, including LSCO which undergoes a Lifshitz transition in the relevant doping range, a complication which turns out to be superficial. Our results imply that prior to evoking polaronic, quantum critical point, quantum dissipation, or even more exotic scenarios for the evolution of transport properties in cuprates, Fermi-surface properties must be addressed in realistic detail.
Collapse
Affiliation(s)
| | - W Tabiś
- Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059, Krakow, Poland
| | - M A Gala
- Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059, Krakow, Poland
| | - O S Barišić
- Institute of Physics, Bijenička cesta 46, HR-10000, Zagreb, Croatia.
| | - D K Sunko
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000, Zagreb, Croatia.
| | - N Barišić
- Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Zorić M, Dhami NS, Bader K, Gille P, Smontara A, Popčević P. Negative Magnetoresistance in Hopping Regime of Lightly Doped Thermoelectric SnSe. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2863. [PMID: 37049159 PMCID: PMC10095749 DOI: 10.3390/ma16072863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Semiconducting SnSe, an analog of black phosphorus, recently attracted great scientific interest due to a disputed report of a large thermoelectric figure of merit, which has not been reproduced subsequently. Here we concentrate on the low-temperature ground state. To gain a better understanding of the system, we present magneto-transport properties in high-quality single crystals of as-grown, lightly doped SnSe down to liquid helium temperatures. We show that SnSe behaves as a p-type doped semiconductor in the vicinity of a metal-insulator transition. Electronic transport at the lowest temperatures is dominated by the hopping mechanism. Negative magnetoresistance at low fields is well described by antilocalization, while positive magnetoresistance at higher fields is consistent with the shrinkage of localized impurity wavefunctions. At higher temperatures, a dilute metallic regime is realized where elusive T2 and B2 resistivity dependence is observed, posing a challenge to theoretical comprehension of the underlying physical mechanism.
Collapse
Affiliation(s)
- Marija Zorić
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | | | - Kristian Bader
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 Munich, Germany
| | - Peter Gille
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 Munich, Germany
| | - Ana Smontara
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Petar Popčević
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Unveiling the selenium content effect on the properties of TiSe2±α. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Abstract
In traditional metals, the temperature (
T
) dependence of electrical resistivity vanishes at low or high
T
, albeit for different reasons. Here, we review a class of materials, known as “strange” metals, that can violate both of these principles. In strange metals, the change in slope of the resistivity as the mean free path drops below the lattice constant, or as
T
→ 0, can be imperceptible, suggesting continuity between the charge carriers at low and high
T
. We focus on transport and spectroscopic data on candidate strange metals in an effort to isolate and identify a unifying physical principle. Special attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge principle is needed to account for the nonlocal transport seen in these materials.
Collapse
Affiliation(s)
- Philip W. Phillips
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois, Urbana, IL 61801, USA
| | - Nigel E. Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Peter Abbamonte
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Barišić N, Sunko DK. High-T c Cuprates: a Story of Two Electronic Subsystems. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 2022; 35:1781-1799. [PMID: 35756097 PMCID: PMC9217785 DOI: 10.1007/s10948-022-06183-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
A review of the phenomenology and microscopy of cuprate superconductors is presented, with particular attention to universal conductance features, which reveal the existence of two electronic subsystems. The overall electronic system consists of 1 + p charges, where p is the doping. At low dopings, exactly one hole is localized per planar copper-oxygen unit, while upon increasing doping and temperature, the hole is gradually delocalized and becomes itinerant. Remarkably, the itinerant holes exhibit identical Fermi liquid character across the cuprate phase diagram. This universality enables a simple count of carrier density and yields comprehensive understanding of the key features in the normal and superconducting state. A possible superconducting mechanism is presented, compatible with the key experimental facts. The base of this mechanism is the interaction of fast Fermi liquid carriers with localized holes. A change in the microscopic nature of chemical bonding in the copper oxide planes, from ionic to covalent, is invoked to explain the phase diagram of these fascinating compounds.
Collapse
Affiliation(s)
- N. Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000 Croatia
- Institute of Solid State Physics, TU Wien, Vienna, 1040 Austria
| | - D. K. Sunko
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000 Croatia
| |
Collapse
|
6
|
Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 2021; 595:661-666. [PMID: 34321672 DOI: 10.1038/s41586-021-03622-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Strange metals possess highly unconventional electrical properties, such as a linear-in-temperature resistivity1-6, an inverse Hall angle that varies as temperature squared7-9 and a linear-in-field magnetoresistance10-13. Identifying the origin of these collective anomalies has proved fundamentally challenging, even in materials such as the hole-doped cuprates that possess a simple bandstructure. The prevailing consensus is that strange metallicity in the cuprates is tied to a quantum critical point at a doping p* inside the superconducting dome14,15. Here we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond p*. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high values of the ratio of the field and the temperature, indicating that the strange-metal regime extends well beyond p*. Moreover, the magnitude of the magnetoresistance is found to be much larger than predicted by conventional theory and is insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange-metal region hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant 'Planckian' dissipators.
Collapse
|
7
|
Knowles P, Yang B, Muramatsu T, Moulding O, Buhot J, Sayers CJ, Da Como E, Friedemann S. Fermi Surface Reconstruction and Electron Dynamics at the Charge-Density-Wave Transition in TiSe_{2}. PHYSICAL REVIEW LETTERS 2020; 124:167602. [PMID: 32383948 DOI: 10.1103/physrevlett.124.167602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The evolution of the charge carrier concentrations and mobilities are examined across the charge-density-wave (CDW) transition in TiSe_{2}. Combined quantum oscillation and magnetotransport measurements show that a small electron pocket dominates the electronic properties at low temperatures while an electron and hole pocket contribute at room temperature. At the CDW transition, an abrupt Fermi surface reconstruction and a minimum in the electron and hole mobilities are extracted from two-band and Kohler analysis of magnetotransport measurements. The minimum in the mobilities is associated with the overseen role of scattering from the softening CDW mode. With the carrier concentrations and dynamics dominated by the CDW and the associated bosonic mode, our results highlight TiSe_{2} as a prototypical system to study the Fermi surface reconstruction at a density-wave transition.
Collapse
Affiliation(s)
- Patrick Knowles
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Bo Yang
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Takaki Muramatsu
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Owen Moulding
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Jonathan Buhot
- High Field Magnet Laboratory, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Charles J Sayers
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Enrico Da Como
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sven Friedemann
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
8
|
Cao S, Ma W, Zhai G, Xie Z, Gao X, Zhao Y, Ma X, Tong L, Jia S, Chen JH. Anisotropic Raman spectrum and transport properties of AuTe 2Br flakes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:12LT01. [PMID: 31778977 DOI: 10.1088/1361-648x/ab5cb4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Topological semimetal (TSM) AuTe2Br thin flakes have been studied by Raman spectroscopy and magneto-transport measurement. The angle-resolved polarized Raman spectrum of AuTe2Br (bulk and thin flake) shows strong anisotropy. Together with high resolution transmission electron microscopy (TEM), we establish a non-destructive method to determine the crystallographic orientation of AuTe2Br flakes. At high temperature (T > 50 K), the magneto-resistance (MR) of AuTe2Br thin flakes shows typical parabolic-like behavior, which can be well fitted by the two-fluid model. However, at low temperature (T ⩽ 30 K), the MR of thin flakes (<17 nm) clearly deviates from the two-fluid model as well as from the Kohler's rule, suggesting a new type of scattering emerging below 30 K. Several possible scattering mechanisms are discussed and the respective corrections to MR are compared with our experimental data. In addition, the conductivity of these metallic crystals is also found to be highly anisotropic, with the hole mobility along the a axis about five times higher than that along the c axis.
Collapse
Affiliation(s)
- Shimin Cao
- International Center of Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sacco C, Galdi A, Orgiani P, Coppola N, Wei HI, Arpaia R, Charpentier S, Lombardi F, Goodge B, Kourkoutis LF, Shen K, Schlom DG, Maritato L. Low temperature hidden Fermi-liquid charge transport in under doped La x Sr 1-x CuO 2 infinite layer electron-doped thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:445601. [PMID: 31295728 DOI: 10.1088/1361-648x/ab3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have studied the low temperature electrical transport properties of La x Sr1-x CuO2 thin films grown by oxide molecular beam epitaxy on (1 1 0) GdScO3 and TbScO3 substrates. The transmission electron microscopy measurements and the x-ray diffraction analysis confirmed the epitaxy of the obtained films and the study of their normal state transport properties, removing the ambiguity regarding the truly conducting layer, allowed to highlight the presence of a robust hidden Fermi liquid charge transport in the low temperature properties of infinite layer electron doped cuprate superconductors. These results are in agreement with recent observations performed in other p and n doped cuprate materials and point toward a general description of the superconducting and normal state properties in these compounds.
Collapse
Affiliation(s)
- C Sacco
- Department of Industrial Engineering, University of Salerno, Fisciano (SA), Italy. CNR-SPIN, UOS Salerno, Fisciano (SA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liao L, Chen P, Kou X, Pan F, Song C. Tuning the magnetotransport behavior of topological insulator with a transition-metal oxide layer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:405001. [PMID: 31272092 DOI: 10.1088/1361-648x/ab2f53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interaction between topological insulator (TI) and its adjacent magnetic layer serves as a basis for exploring the device application of TI. Here we investigate the modulation of the magnetotransport behavior of Bi2Te3 TI with a transition-metal oxide layer NiO. It is found that the weak-antilocalization effect is absent at low magnetic fields and the magnetoresistance ratio decreases monotonically with increasing the NiO growth temperature from 300 to 473 K, indicating the suppression of the topological surface states of Bi2Te3. Such behaviors are attributed to the decomposition of NiO and the concomitant formation of magnetic impurities at the Bi2Te3/NiO interface. Differently, the weak-antilocalization shows no significant weakening with the growth of Cr2O3 top layer, due to its better chemical stability. Our observation would be significant for the material selection for the device integration of TI.
Collapse
Affiliation(s)
- Liyang Liao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Murayama H, Sato Y, Kurihara R, Kasahara S, Mizukami Y, Kasahara Y, Uchiyama H, Yamamoto A, Moon EG, Cai J, Freyermuth J, Greven M, Shibauchi T, Matsuda Y. Diagonal nematicity in the pseudogap phase of HgBa 2CuO 4+δ. Nat Commun 2019; 10:3282. [PMID: 31337758 PMCID: PMC6650423 DOI: 10.1038/s41467-019-11200-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/27/2019] [Indexed: 11/09/2022] Open
Abstract
The pseudogap phenomenon in the cuprates is arguably the most mysterious puzzle in the field of high-temperature superconductivity. The tetragonal cuprate HgBa2CuO4+δ, with only one CuO2 layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the magnetic susceptibility anisotropy within the CuO2 plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature T*, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Surprisingly, the nematic director orients along the diagonal direction of the CuO2 square lattice, in sharp contrast to the bond nematicity along the Cu-O-Cu direction. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave formation occurs. Our result suggests a competing relationship between diagonal nematic and charge-density-wave order in HgBa2CuO4+δ.
Collapse
Affiliation(s)
- H Murayama
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Sato
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - R Kurihara
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - S Kasahara
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Y Mizukami
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Y Kasahara
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - H Uchiyama
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - A Yamamoto
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8584, Japan
| | - E-G Moon
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - J Cai
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.,Physics Department, University of Maryland, College Park, MD, 20742-4111, USA
| | - J Freyermuth
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Physics, The Ohio State University, Columbus, OH, 43210-1117, USA
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - T Shibauchi
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
12
|
Li Y, Tabis W, Tang Y, Yu G, Jaroszynski J, Barišić N, Greven M. Hole pocket-driven superconductivity and its universal features in the electron-doped cuprates. SCIENCE ADVANCES 2019; 5:eaap7349. [PMID: 30746483 PMCID: PMC6358316 DOI: 10.1126/sciadv.aap7349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/02/2018] [Indexed: 05/10/2023]
Abstract
After three decades of intensive research attention, the emergence of superconductivity in cuprates remains an unsolved puzzle. One major challenge has been to arrive at a satisfactory understanding of the unusual metallic "normal state" from which the superconducting state emerges upon cooling. A second challenge has been to achieve a unified understanding of hole- and electron-doped compounds. Here, we report detailed magnetoresistance measurements for the archetypal electron-doped cuprate Nd2-x Ce x CuO4+δ that, in combination with previous data, provide crucial links between the normal and superconducting states and between the electron- and hole-doped parts of the phase diagram. The characteristics of the normal state (magnetoresistance, quantum oscillations, and Hall coefficient) and those of the superconducting state (superfluid density and upper critical field) consistently indicate two-band (electron and hole) features and point to hole pocket-driven superconductivity in these nominally electron-doped materials. We show that the approximate Uemura scaling between the superconducting transition temperature and the superfluid density found for hole-doped cuprates also holds for the small hole component of the superfluid density in electron-doped cuprates.
Collapse
Affiliation(s)
- Yangmu Li
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Corresponding author. (Y.L.); (N.B.); (M.G.)
| | - W. Tabis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland
| | - Y. Tang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - G. Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - J. Jaroszynski
- National High Magnetic Field National Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - N. Barišić
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
- Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
- Corresponding author. (Y.L.); (N.B.); (M.G.)
| | - M. Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Corresponding author. (Y.L.); (N.B.); (M.G.)
| |
Collapse
|
13
|
Pelc D, Popčević P, Požek M, Greven M, Barišić N. Unusual behavior of cuprates explained by heterogeneous charge localization. SCIENCE ADVANCES 2019; 5:eaau4538. [PMID: 30746450 PMCID: PMC6357730 DOI: 10.1126/sciadv.aau4538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The discovery of high-temperature superconductivity in cuprates ranks among the major scientific milestones of the past half century, yet pivotal questions regarding the complex phase diagram of these materials remain unanswered. Generally thought of as doped charge-transfer insulators, these complex oxides exhibit pseudogap, strange-metal, superconducting, and Fermi liquid behavior with increasing hole-dopant concentration. Motivated by recent experimental observations, here we introduce a phenomenological model wherein exactly one hole per planar copper-oxygen unit is delocalized with increasing doping and temperature. The model is percolative in nature, with parameters that are highly consistent with experiments. It comprehensively captures key unconventional experimental results, including the temperature and the doping dependence of the pseudogap phenomenon, the strange-metal linear temperature dependence of the planar resistivity, and the doping dependence of the superfluid density. The success and simplicity of the model greatly demystify the cuprate phase diagram and point to a local superconducting pairing mechanism.
Collapse
Affiliation(s)
- D. Pelc
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - P. Popčević
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
- Institute of Physics, HR-10000 Zagreb, Croatia
| | - M. Požek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia
| | - M. Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - N. Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
14
|
Pelc D, Vučković M, Grbić MS, Požek M, Yu G, Sasagawa T, Greven M, Barišić N. Emergence of superconductivity in the cuprates via a universal percolation process. Nat Commun 2018; 9:4327. [PMID: 30337539 PMCID: PMC6193991 DOI: 10.1038/s41467-018-06707-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022] Open
Abstract
A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state. In the cuprates, traces of superconducting pairing appear above the macroscopic transition temperature Tc, yet extensive investigation has led to disparate conclusions. The main difficulty has been to separate superconducting contributions from complex normal-state behaviour. Here we avoid this problem by measuring nonlinear conductivity, an observable that is zero in the normal state. We uncover for several representative cuprates that the nonlinear conductivity vanishes exponentially above Tc, both with temperature and magnetic field, and exhibits temperature-scaling characterized by a universal scale Ξ0. Attempts to model the response with standard Ginzburg-Landau theory are systematically unsuccessful. Instead, our findings are captured by a simple percolation model that also explains other properties of the cuprates. We thus resolve a long-standing conundrum by showing that the superconducting precursor in the cuprates is strongly affected by intrinsic inhomogeneity.
Collapse
Affiliation(s)
- Damjan Pelc
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, HR-10000, Zagreb, Croatia
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marija Vučković
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, HR-10000, Zagreb, Croatia
- University Hospital Centre Zagreb, Kišpatićeva 12, HR-10000, Zagreb, Croatia
| | - Mihael S Grbić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, HR-10000, Zagreb, Croatia
| | - Miroslav Požek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, HR-10000, Zagreb, Croatia.
| | - Guichuan Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Takao Sasagawa
- Materials and Structures Laboratory, Tokyo Institute of Technology, Kanagawa, 226-8503, Japan
| | - Martin Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Neven Barišić
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
| |
Collapse
|
15
|
Abstract
We compute the electronic Green's function of the topologically ordered Higgs phase of a SU(2) gauge theory of fluctuating antiferromagnetism on the square lattice. The results are compared with cluster extensions of dynamical mean field theory, and quantum Monte Carlo calculations, on the pseudogap phase of the strongly interacting hole-doped Hubbard model. Good agreement is found in the momentum, frequency, hopping, and doping dependencies of the spectral function and electronic self-energy. We show that lines of (approximate) zeros of the zero-frequency electronic Green's function are signs of the underlying topological order of the gauge theory and describe how these lines of zeros appear in our theory of the Hubbard model. We also derive a modified, nonperturbative version of the Luttinger theorem that holds in the Higgs phase.
Collapse
|
16
|
Chan MK, Tang Y, Dorow CJ, Jeong J, Mangin-Thro L, Veit MJ, Ge Y, Abernathy DL, Sidis Y, Bourges P, Greven M. Hourglass Dispersion and Resonance of Magnetic Excitations in the Superconducting State of the Single-Layer Cuprate HgBa_{2}CuO_{4+δ} Near Optimal Doping. PHYSICAL REVIEW LETTERS 2016; 117:277002. [PMID: 28084762 DOI: 10.1103/physrevlett.117.277002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
We use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa_{2}CuO_{4+δ} (superconducting transition temperature T_{c}≈88 K, pseudogap temperature T^{*}≈220 K). The response is distinctly enhanced below T^{*} and exhibits a Y-shaped dispersion in the pseudogap state, whereas the superconducting state features an X-shaped (hourglass) dispersion and a further resonancelike enhancement. A large spin gap of about 40 meV is observed in both states. This phenomenology is reminiscent of that exhibited by bilayer cuprates. The resonance spectral weight, irrespective of doping and compound, scales linearly with the putative binding energy of a spin exciton described by an itinerant-spin formalism.
Collapse
Affiliation(s)
- M K Chan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Pulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Y Tang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C J Dorow
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Jeong
- Laboratoire Léon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France
| | - L Mangin-Thro
- Laboratoire Léon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France
| | - M J Veit
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Y Ge
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - D L Abernathy
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Y Sidis
- Laboratoire Léon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France
| | - P Bourges
- Laboratoire Léon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif sur Yvette, France
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Li Y, Tabis W, Yu G, Barišić N, Greven M. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2016; 117:197001. [PMID: 27858438 DOI: 10.1103/physrevlett.117.197001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 06/06/2023]
Abstract
Systematic analysis of the planar resistivity, Hall effect, and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping and compound and carrier type (electrons versus holes), and hence is universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.
Collapse
Affiliation(s)
- Yangmu Li
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - W Tabis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland
| | - G Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - N Barišić
- Fakultät für Physik, Technische Universität Wien, Wiedner Hauptstraße 8, 1040 Wien, Austria
- Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
18
|
Sachdev S. Emergent gauge fields and the high-temperature superconductors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0248. [PMID: 27458260 DOI: 10.1098/rsta.2015.0248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 06/06/2023]
Abstract
The quantum entanglement of many states of matter can be represented by electric and magnetic fields, much like those found in Maxwell's theory. These fields 'emerge' from the quantum structure of the many-electron state, rather than being fundamental degrees of freedom of the vacuum. I review basic aspects of the theory of emergent gauge fields in insulators in an intuitive manner. In metals, Fermi liquid (FL) theory relies on adiabatic continuity from the free electron state, and its central consequence is the existence of long-lived electron-like quasi-particles around a Fermi surface enclosing a volume determined by the total density of electrons, via the Luttinger theorem. However, long-range entanglement and emergent gauge fields can also be present in metals. I focus on the 'fractionalized Fermi liquid' (FL*) state, which also has long-lived electron-like quasi-particles around a Fermi surface; however, the Luttinger theorem on the Fermi volume is violated, and this requires the presence of emergent gauge fields, and the associated loss of adiabatic continuity with the free electron state. Finally, I present a brief survey of some recent experiments in the hole-doped cuprate superconductors, and interpret the properties of the pseudogap regime in the framework of the FL* theory.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.
Collapse
Affiliation(s)
- Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
| |
Collapse
|
19
|
Kloss T, Montiel X, de Carvalho VS, Freire H, Pépin C. Charge orders, magnetism and pairings in the cuprate superconductors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:084507. [PMID: 27427401 DOI: 10.1088/0034-4885/79/8/084507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T (*). We discuss the implications of this scenario for a few key experiments.
Collapse
Affiliation(s)
- T Kloss
- IPhT, L'Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
20
|
Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor. Nat Commun 2016; 7:12244. [PMID: 27448102 PMCID: PMC4961849 DOI: 10.1038/ncomms12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/15/2016] [Indexed: 12/01/2022] Open
Abstract
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. The identification of broken symmetry states in underdoped cuprate superconductors via quantum oscillation measurements remains inconclusive. Here, Chan et al. report the reconstructed Fermi surface of HgBa2CuO4+δ comprises only a single pocket indicating a biaxial charge-density-wave order within each CuO2 plane.
Collapse
|
21
|
Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO(4+δ). Nat Commun 2016; 7:10819. [PMID: 26940332 PMCID: PMC4785222 DOI: 10.1038/ncomms10819] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/22/2016] [Indexed: 11/23/2022] Open
Abstract
Antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa2CuO4+δ. Here we report neutron-scattering results for HgBa2CuO4+δ (superconducting transition temperature Tc≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped ‘hourglass' response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped and significantly enhanced below T*, and hence a prominent signature of the pseudogap state. In the cuprates, antiferromagnetic correlations might be the cause of the pseudogap phenomenon. Here the authors use neutron scattering on the tetragonal cuprate HgBa2CuO4+δ revealing commensurate antiferromagnetic excitations as a signature of the pseudogap state.
Collapse
|
22
|
Abstract
We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S = 1/2, charge +e fermionic dimers. The model realizes a "fractionalized Fermi liquid" with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8 × 8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments.
Collapse
|
23
|
Gor'kov LP, Teitel'baum GB. Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering. Sci Rep 2015; 5:8524. [PMID: 25688011 PMCID: PMC4330546 DOI: 10.1038/srep08524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
In the search for mechanisms of high-temperature superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of angle-resolved photoemission data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. Here we show that, in the entire Fermi-liquid-like regime that is ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket. We argue that experiments on the Hall coefficient identify the latter as a permanent feature at doped hole concentration x > 0.08-0.10, in contrast to the idea of the Fermi surface reconstruction via charge ordering. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails as mobility of the latter (evaluated by the Dingle temperature) becomes temperature independent, while the mobility of holes scattered by the short-wavelength charge density waves decreases.
Collapse
Affiliation(s)
- Lev P. Gor'kov
- NHMFL, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310, USA
- L.D. Landau Institute for Theoretical Physics of the RAS, Chernogolovka 142432, Russia
| | | |
Collapse
|
24
|
Tabis W, Li Y, Le Tacon M, Braicovich L, Kreyssig A, Minola M, Dellea G, Weschke E, Veit MJ, Ramazanoglu M, Goldman AI, Schmitt T, Ghiringhelli G, Barišić N, Chan MK, Dorow CJ, Yu G, Zhao X, Keimer B, Greven M. Charge order and its connection with Fermi-liquid charge transport in a pristine high-T(c) cuprate. Nat Commun 2014; 5:5875. [PMID: 25522689 DOI: 10.1038/ncomms6875] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO(4+δ) (T(c)=72 K) via bulk Cu L3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which these two phenomena are preceded at the higher pseudogap temperature by q=0 magnetic order and the build-up of significant dynamic antiferromagnetic correlations. The magnitude of the charge modulation wave vector is consistent with the size of the electron pocket implied by quantum oscillation and Hall effect measurements for HgBa2CuO(4+δ) and with corresponding results for YBa2Cu3O(6+δ), which indicates that charge-density-wave correlations are universally responsible for the low-temperature quantum oscillation phenomenon.
Collapse
Affiliation(s)
- W Tabis
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Y Li
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - M Le Tacon
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - L Braicovich
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - A Kreyssig
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Minola
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - G Dellea
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - E Weschke
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - M J Veit
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M Ramazanoglu
- 1] Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA [2] Physics Engineering Department, ITU, Maslak 34469, Istanbul, Turkey
| | - A I Goldman
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - T Schmitt
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G Ghiringhelli
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - N Barišić
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] Service de Physique de l'Etat Condensé, CEA-DSM-IRAMIS, F-91198 Gif-sur-Yvette, France [3] Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - M K Chan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C J Dorow
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - G Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - X Zhao
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - B Keimer
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|