1
|
Yang PY, Noad HML, Barber ME, Kikugawa N, Sokolov DA, Mackenzie AP, Hicks CW. Probing Momentum-Dependent Scattering in Uniaxially Stressed Sr_{2}RuO_{4} through the Hall Effect. PHYSICAL REVIEW LETTERS 2023; 131:036301. [PMID: 37540856 DOI: 10.1103/physrevlett.131.036301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
The largest Fermi surface sheet of the correlated metal Sr_{2}RuO_{4} can be driven through a Lifshitz transition between an electronlike and an open geometry by uniaxial stress applied along the [100] lattice direction. Here, we investigate the effect of this transition on the longitudinal resistivity ρ_{xx} and the Hall coefficient R_{H}. ρ_{xx}(T), when Sr_{2}RuO_{4} is tuned to this transition, is found to have a T^{2}logT form, as expected for a Fermi liquid tuned to a Lifshitz transition. R_{H} is found to become more negative as the Fermi surface transitions from an electronlike to an open geometry, opposite to general expectations from this change in topology. The magnitude of the change in R_{H} implies that scattering changes throughout the Brillouin zone, not just at the point in k space where the transition occurs. In a model of orbital-dependent scattering, the electron-electron scattering rate on sections of Fermi surface with xy orbital weight is found to decrease dramatically.
Collapse
Affiliation(s)
- Po-Ya Yang
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
| | - Hilary M L Noad
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
| | - Mark E Barber
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Geballe Laboratory for Advanced Materials, Stanford, California 94305, USA
| | - Naoki Kikugawa
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
| | - Dmitry A Sokolov
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
| | - Andrew P Mackenzie
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Clifford W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str 40, 01187 Dresden, Germany
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Kundu AK, Barman S, Menon KSR. Role of Surface Termination in the Metal-Insulator Transition of V 2O 3(0001) Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20779-20787. [PMID: 33887915 DOI: 10.1021/acsami.1c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface termination is known to play an important role in determining the physical properties of materials. It is crucial to know how surface termination affects the metal-insulator transition (MIT) of V2O3 films for both fundamental understanding and its applications. By changing growth parameters, we achieved a variety of surface terminations in V2O3 films that are characterized by low-energy electron diffraction (LEED) and photoemission spectroscopy techniques. Depending upon the terminations, our results show that MIT can be partially or fully suppressed near the surface region due to the different fillings of the electrons at the surface and subsurface layers and the change of screening length compared to the bulk. Across MIT, a strong redistribution of spectral weight and its transfer from a high-to-low-binding energy regime is observed in a wide energy scale. Our results show that the total spectral weight in the low-energy regime is not conserved across MIT, indicating a breakdown of the "sum rules of spectral weight", signature of a strongly correlated system. Such a change in spectral weight is possibly linked to the change in hybridization, lattice volume (i.e., effective carrier density), and the spin degree of freedom in the system that occurs across MIT. We find that MIT in this system is strongly correlation-driven, where the electron-electron interactions play a pivotal role. Moreover, our results provide better insight into the understanding of the electronic structure of strongly correlated systems and highlight the importance of accounting for surface effects during interpretation of the physical property data mainly using surface-sensitive probes, such as surface resistivity.
Collapse
Affiliation(s)
- Asish K Kundu
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sukanta Barman
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
- Department of Physics, Raja Peary Mohan College, Uttarpara, Hooghly 712258, India
| | - Krishnakumar S R Menon
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
3
|
Kang CJ, Kotliar G. Optical Properties of the Infinite-Layer La_{1-x}Sr_{x}NiO_{2} and Hidden Hund's Physics. PHYSICAL REVIEW LETTERS 2021; 126:127401. [PMID: 33834805 DOI: 10.1103/physrevlett.126.127401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
We investigate the optical properties of the normal state of the infinite-layer La_{1-x}Sr_{x}NiO_{2} using density functional theory plus dynamical mean-field theory. We find a correlated metal which exhibits substantial transfer of spectral weight to high energies relative to the density functional theory. The correlations are not due to Mott physics, which would suppress the charge fluctuations and the integrated optical spectral weight as we approach a putative insulating state. Instead, we find the unusual situation, that the integrated optical spectral weight decreases with doping and increases with increasing temperature. We contrast this with the coherent component of the optical conductivity, which decreases with increasing temperature as a result of a coherence-incoherence crossover. Our studies reveal that the effective crystal field splitting is dynamical and increases strongly at low frequency. This leads to a picture of a Hund's metallic state, where dynamical orbital fluctuations are visible at intermediate energies, while at low energies a Fermi surface with primarily d_{x^{2}-y^{2}} character emerges. The infinite-layer nickelates are thus in an intermediate position between the iron based high temperature superconductors where multiorbital Hund's physics dominates and a one-band system such as the cuprates. To capture this physics we propose a low-energy two-band model with atom centered e_{g} states.
Collapse
Affiliation(s)
- Chang-Jong Kang
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
- Department of Physics, Chungnam National University, Daejeon 34134, South Korea
| | - Gabriel Kotliar
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
4
|
Pustogow A, Saito Y, Löhle A, Sanz Alonso M, Kawamoto A, Dobrosavljević V, Dressel M, Fratini S. Rise and fall of Landau's quasiparticles while approaching the Mott transition. Nat Commun 2021; 12:1571. [PMID: 33692366 PMCID: PMC7977040 DOI: 10.1038/s41467-021-21741-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Landau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m⋆. Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe–Regel–Mott limit is accompanied by a ‘displaced Drude peak’ in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition. Charge transport in strongly correlated electron systems is not fully understood. Here, the authors show that resilient quasiparticles at finite frequency persist into the bad-metal regime near a Mott insulator, where dynamical localization results in a ‘displaced Drude peak’ and strongly enhanced dc resistivity.
Collapse
Affiliation(s)
- Andrej Pustogow
- 1. Physikalisches Institut, Universität Stuttgart, 70569, Stuttgart, Germany. .,Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA. .,Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria.
| | - Yohei Saito
- 1. Physikalisches Institut, Universität Stuttgart, 70569, Stuttgart, Germany.,Department of Physics, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Anja Löhle
- 1. Physikalisches Institut, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Miriam Sanz Alonso
- 1. Physikalisches Institut, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Atsushi Kawamoto
- Department of Physics, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Vladimir Dobrosavljević
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Martin Dressel
- 1. Physikalisches Institut, Universität Stuttgart, 70569, Stuttgart, Germany.
| | - Simone Fratini
- Institut Néel - CNRS and Université Grenoble Alpes, Grenoble Cedex 9, France.
| |
Collapse
|
5
|
Wang Y, Walter E, Lee SSB, Stadler KM, von Delft J, Weichselbaum A, Kotliar G. Global Phase Diagram of a Spin-Orbital Kondo Impurity Model and the Suppression of Fermi-Liquid Scale. PHYSICAL REVIEW LETTERS 2020; 124:136406. [PMID: 32302177 DOI: 10.1103/physrevlett.124.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies, but for Hund metals the Fermi-liquid coherence scale T_{FL} is found to be surprisingly small. In this Letter, we study the simplest impurity model relevant for Hund metals, the three-channel spin-orbital Kondo model, using the numerical renormalization group (NRG) method and compute its global phase diagram. In this framework, T_{FL} becomes arbitrarily small close to two new quantum critical points that we identify by tuning the spin or spin-orbital Kondo couplings into the ferromagnetic regimes. We find quantum phase transitions to a singular Fermi-liquid or a novel non-Fermi-liquid phase. The new non-Fermi-liquid phase shows frustrated behavior involving alternating overscreenings in spin and orbital sectors, with universal power laws in the spin (ω^{-1/5}), orbital (ω^{1/5}) and spin-orbital (ω^{1}) dynamical susceptibilities. These power laws, and the NRG eigenlevel spectra, can be fully understood using conformal field theory arguments, which also clarify the nature of the non-Fermi-liquid phase.
Collapse
Affiliation(s)
- Y Wang
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Walter
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - S-S B Lee
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - K M Stadler
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - J von Delft
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - A Weichselbaum
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - G Kotliar
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
| |
Collapse
|
6
|
Ray S, Das T. Theory of angle-dependent marginal Fermi liquid self-energy and its existence at all dopings in cuprates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:365603. [PMID: 31146268 DOI: 10.1088/1361-648x/ab25b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various angle-dependent measurements in hole-doped cuprates suggested that non-Fermi liquid (NFL) and Fermi-liquid (FL) self-energies coexist in the Brillouin zone. Moreover, it is also found that NFL self-energies survive up to the overdoped region where the resistivity features a global FL-behavior. To address this problem, we compute the momentum dependent self-energy from a single band Hubbard model. The self-energy is calculated self-consistently by using a momentum-dependent density-fluctuation (MRDF) method. One of our main results is that the computed self-energy exhibits a marginal-FL (MFL)-like frequency dependence only in the antinodal region, and FL-like behavior elsewhere at all dopings. The MFL self-energy stems from the fluctuations between the itinerant and localized densities-a result that appears when self-energy is calculated self-consistently and features an intermediate coupling behavior of cuprates. We also calculate the DC conductivity by including the full momentum dependent self-energy. We find that the resistivity-temperature exponent n becomes 1 near the optimal doping, while the MFL self-energy occupies largest momentum-space volume. Surprisingly, even in the NFL state near the optimal doping, the nodal region contains FL-like self-energies; while in the under- and over-dopings ([Formula: see text]), the antinodal region remains NFL-like. These results highlight the non-local correlation physics in cuprates and in other similar intermediately correlated materials, where a direct link between the microscopic single-particle spectral properties and the macroscopic transport behavior can not be well established.
Collapse
Affiliation(s)
- Sujay Ray
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
7
|
Signatures of Mottness and Hundness in archetypal correlated metals. Nat Commun 2019; 10:2721. [PMID: 31221960 PMCID: PMC6586627 DOI: 10.1038/s41467-019-10257-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Physical properties of multi-orbital materials depend not only on the strength of the effective interactions among the valence electrons but also on their type. Strong correlations are caused by either Mott physics that captures the Coulomb repulsion among charges, or Hund physics that aligns the spins in different orbitals. We identify four energy scales marking the onset and the completion of screening in orbital and spin channels. The differences in these scales, which are manifest in the temperature dependence of the local spectrum and of the charge, spin and orbital susceptibilities, provide clear signatures distinguishing Mott and Hund physics. We illustrate these concepts with realistic studies of two archetypal strongly correlated materials, and corroborate the generality of our conclusions with a model Hamiltonian study.
Collapse
|
8
|
Lechermann F, Bernstein N, Mazin II, Valentí R. Uncovering the Mechanism of the Impurity-Selective Mott Transition in Paramagnetic V_{2}O_{3}. PHYSICAL REVIEW LETTERS 2018; 121:106401. [PMID: 30240239 DOI: 10.1103/physrevlett.121.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 06/08/2023]
Abstract
While the phase diagrams of the one- and multiorbital Hubbard model have been well studied, the physics of real Mott insulators is often much richer, material dependent, and poorly understood. In the prototype Mott insulator V_{2}O_{3}, chemical pressure was initially believed to explain why the paramagnetic-metal to antiferromagnetic-insulator transition temperature is lowered by Ti doping while Cr doping strengthens correlations, eventually rendering the high-temperature phase paramagnetic insulating. However, this scenario has been recently shown both experimentally and theoretically to be untenable. Based on full structural optimization, we demonstrate via the charge self-consistent combination of density functional theory and dynamical mean-field theory that changes in the V_{2}O_{3} phase diagram are driven by defect-induced local symmetry breakings resulting from dramatically different couplings of Cr and Ti dopants to the host system. This finding emphasizes the high sensitivity of the Mott metal-insulator transition to the local environment and the importance of accurately accounting for the one-electron Hamiltonian, since correlations crucially respond to it.
Collapse
Affiliation(s)
- Frank Lechermann
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
| | - Noam Bernstein
- Code 6393, Naval Research Laboratory, Washington, DC 20375, USA
| | - I I Mazin
- Code 6393, Naval Research Laboratory, Washington, DC 20375, USA
| | - Roser Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Barman H, Laad MS, Hassan SR. Can disorder act as a chemical pressure? An optical study of the Hubbard model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:195603. [PMID: 29595521 DOI: 10.1088/1361-648x/aabaa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.
Collapse
Affiliation(s)
- H Barman
- Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| | | | | |
Collapse
|
10
|
Han Q, Birol T, Haule K. Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron. PHYSICAL REVIEW LETTERS 2018; 120:187203. [PMID: 29775328 DOI: 10.1103/physrevlett.120.187203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/03/2018] [Indexed: 06/08/2023]
Abstract
We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.
Collapse
Affiliation(s)
- Qiang Han
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kristjan Haule
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
| |
Collapse
|
11
|
Wölfle P. Quasiparticles in condensed matter systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:032501. [PMID: 29155414 DOI: 10.1088/1361-6633/aa9bc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.
Collapse
Affiliation(s)
- Peter Wölfle
- Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, 76049 Karlsruhe, Germany. Institute for Nanotechnology, Karlsruhe Institute of Technology, 76031 Karlsruhe, Germany
| |
Collapse
|
12
|
Lo Vecchio I, Baldassarre L, Di Pietro P, Giorgianni F, Marsi M, Perucchi A, Schade U, Lanzara A, Lupi S. Orbital dependent coherence temperature and optical anisotropy of V 2O 3 quasiparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:345602. [PMID: 28665290 DOI: 10.1088/1361-648x/aa7cd7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on an orbital and temperature dependent study of the onset of coherent quasiparticles in V2O3 single crystal. By using polarized infrared spectroscopy we demonstrate that the electronic coherence temperature is strongly orbital dependent, being about 400 K for [Formula: see text] orbitals and 500 K for the [Formula: see text]. This suggests that V2O3 low energy electrodynamics can be described in terms of two electron liquids differently renormalized by electronic correlations.
Collapse
Affiliation(s)
- I Lo Vecchio
- Dipartimento di Fisica, 'Sapienza' Università di Roma, Piazzale A. Moro 2, I-00185 Roma, Italy. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lo Vecchio I, Denlinger JD, Krupin O, Kim BJ, Metcalf PA, Lupi S, Allen JW, Lanzara A. Fermi Surface of Metallic V_{2}O_{3} from Angle-Resolved Photoemission: Mid-level Filling of e_{g}^{π} Bands. PHYSICAL REVIEW LETTERS 2016; 117:166401. [PMID: 27792364 DOI: 10.1103/physrevlett.117.166401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Using angle resolved photoemission spectroscopy, we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V_{2}O_{3}. Along the c axis we observe both an electron pocket and a triangular holelike FS topology, showing that both V 3d a_{1g} and e_{g}^{π} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.
Collapse
Affiliation(s)
- I Lo Vecchio
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J D Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - O Krupin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B J Kim
- Max-Planck-Institut fur Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - P A Metcalf
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - S Lupi
- CNR-IOM and Dipartimento di Fisica, Università di Roma "Sapienza", I-00185 Rome, Italy
| | - J W Allen
- Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Lanzara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Brito WH, Aguiar MCO, Haule K, Kotliar G. Metal-Insulator Transition in VO_{2}: A DFT+DMFT Perspective. PHYSICAL REVIEW LETTERS 2016; 117:056402. [PMID: 27517782 DOI: 10.1103/physrevlett.117.056402] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 06/06/2023]
Abstract
We present a theoretical investigation of the electronic structure of rutile (metallic) and M_{1} and M_{2} monoclinic (insulating) phases of VO_{2} employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO_{2}, and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO_{2}: undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M_{2} phase), while strong superexchange within V dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V atoms. The resulting transition from rutile to dimerized M_{1} phase is adiabatically connected to the Peierls-like transition, but is better characterized as the Mott transition in the presence of strong intersite exchange. As a consequence of Mott physics, the gap in the dimerized M_{1} phase is temperature dependent. The sole increase of electronic temperature collapses the gap, reminiscent of recent experiments.
Collapse
Affiliation(s)
- W H Brito
- Departamento de Física, Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - M C O Aguiar
- Departamento de Física, Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil
| | - K Haule
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - G Kotliar
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
15
|
Deng X, Haule K, Kotliar G. Transport Properties of Metallic Ruthenates: A DFT+DMFT Investigation. PHYSICAL REVIEW LETTERS 2016; 116:256401. [PMID: 27391734 DOI: 10.1103/physrevlett.116.256401] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 06/06/2023]
Abstract
We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr_{2}RuO_{4}, Sr_{3}Ru_{2}O_{7}, SrRuO_{3}, and CaRuO_{3}, within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr_{2}RuO_{4} has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.
Collapse
Affiliation(s)
- Xiaoyu Deng
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kristjan Haule
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Gabriel Kotliar
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|