1
|
Liu Y, Huang C, Zhang X, He D. Optimally Fast Qubit Reset. PHYSICAL REVIEW LETTERS 2025; 134:100401. [PMID: 40153619 DOI: 10.1103/physrevlett.134.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/09/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
In practice, qubit reset must be operated in an extremely short time, which incurs a thermodynamic cost within multiple orders of magnitude above the Landauer bound. We present a general framework to determine the minimal thermodynamic cost and the corresponding optimal protocol for memory erasure under arbitrary erasure speeds. Our study reveals the divergent behavior of minimal entropy production in the short-time limit depends on the convergence and divergence of the jump operator. There is an inherent trade-off between the minimal required time and the set error probability for the convergent class. Moreover, we find the optimal protocol exhibits general features in the fast-driving regime. To illustrate these findings, we employ fermionic and bosonic baths as examples. Our results suggest that the super-Ohmic bosonic heat bath is suitable for qubit reset.
Collapse
Affiliation(s)
- Yue Liu
- Xiamen University, Department of Physics and Jiujiang Research Institute, Xiamen 361005, Fujian, China
| | - Chenlong Huang
- Xiamen University, Department of Physics and Jiujiang Research Institute, Xiamen 361005, Fujian, China
| | - Xingyu Zhang
- Xiamen University, Department of Physics and Jiujiang Research Institute, Xiamen 361005, Fujian, China
| | - Dahai He
- Xiamen University, Department of Physics and Jiujiang Research Institute, Xiamen 361005, Fujian, China
| |
Collapse
|
2
|
Hadipour M, Haseli S. Work extraction from quantum coherence in non-equilibrium environment. Sci Rep 2024; 14:24876. [PMID: 39438638 PMCID: PMC11496670 DOI: 10.1038/s41598-024-75478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Ergotropy, which represents the maximum amount of work that can be extracted from a quantum system, has become a focal point of interest in the fields of quantum thermodynamics and information processing. In practical scenarios, the interaction of quantum systems with their surrounding environment is unavoidable. Recent studies have increasingly focused on analyzing open quantum systems affected by non-stationary environmental fluctuations due to their significant impact on various physical scenarios. While much research has concentrated on work extraction from these systems, it often assumes that the environmental degrees of freedom are substantial and that the environment is effectively in equilibrium. This has led us to explore work extraction from quantum systems under non-stationary environmental conditions. In this work, the dynamics of ergotropy will be investigated in a non-equilibrium environment for both Markovian and non-Markovian regime. In this study, both the coherent and incoherent parts of the ergotropy will be considered. It will be shown that for a non-equilibrium environment, the extraction of work is more efficient compared to when the environment is in equilibrium.
Collapse
Affiliation(s)
- Maryam Hadipour
- Faculty of Physics, Urmia University of Technology, Urmia, Iran
| | - Soroush Haseli
- Faculty of Physics, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
3
|
Purkait C, Chand S, Biswas A. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine. Phys Rev E 2024; 109:044128. [PMID: 38755864 DOI: 10.1103/physreve.109.044128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024]
Abstract
We study quantum Otto thermal machines with a two-spin working system coupled by anisotropic interaction. Depending on the choice of different parameters, the quantum Otto cycle can function as different thermal machines, including a heat engine, refrigerator, accelerator, and heater. We aim to investigate how the anisotropy plays a fundamental role in the performance of the quantum Otto engine (QOE) operating in different timescales. We find that while the engine's efficiency increases with the increase in anisotropy for the quasistatic operation, quantum internal friction and incomplete thermalization degrade the performance in a finite-time cycle. Further, we study the quantum heat engine (QHE) with one of the spins (local spin) as the working system. We show that the efficiency of such an engine can surpass the standard quantum Otto limit, along with maximum power, thanks to the anisotropy. This can be attributed to quantum interference effects. We demonstrate that the enhanced performance of a local-spin QHE originates from the same interference effects, as in a measurement-based QOE for their finite-time operation.
Collapse
Affiliation(s)
- Chayan Purkait
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Chand
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Ray KJ, Boyd AB, Guarnieri G, Crutchfield JP. Thermodynamic uncertainty theorem. Phys Rev E 2023; 108:054126. [PMID: 38115447 DOI: 10.1103/physreve.108.054126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023]
Abstract
Thermodynamic uncertainty relations (TURs) express a fundamental lower bound on the precision (inverse scaled variance) of any thermodynamic charge-e.g., work or heat-by functionals of the average entropy production. Relying on purely variational arguments, we significantly extend TUR inequalities by incorporating and analyzing the impact of higher statistical cumulants of the entropy production itself within the general framework of time-symmetrically-controlled computation. We derive an exact expression for the charge that achieves the minimum scaled variance, for which the TUR bound tightens to an equality that we name the thermodynamic uncertainty theorem (TUT). Importantly, both the minimum scaled variance charge and the TUT are functionals of the stochastic entropy production, thus retaining the impact of its higher moments. In particular, our results show that, beyond the average, the entropy production distribution's higher moments have a significant effect on any charge's precision. This is made explicit via a thorough numerical analysis of "swap" and "reset" computations that quantitatively compares the TUT against previous generalized TURs.
Collapse
Affiliation(s)
- Kyle J Ray
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Alexander B Boyd
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - Giacomo Guarnieri
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
5
|
Matos RQ, de Assis RJ, de Almeida NG. Quantum Otto-type heat engine with fixed frequency. Phys Rev E 2023; 108:054131. [PMID: 38115429 DOI: 10.1103/physreve.108.054131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
In this work we analyze an Otto-type cycle operating with a working substance composed of a quantum harmonic oscillator (QHO). Unlike other studies in which the work extraction is done by varying the frequency of the QHO and letting it thermalize with a squeezed reservoir, here we submit the QHO to a parametric pumping controlled by the squeezing parameter and let it thermalize with a thermal reservoir. We then investigate the role of the squeezing parameter in our Otto-type engine powered by parametric pumping and show that it is possible to reach the Carnot limit by arbitrarily increasing the squeezing parameter. Notably, for certain squeezing parameters r, e.g., r=0.4, the quasistatic Otto limit can be reached even at nonzero power. We also investigated the role of entropy production in the efficiency behavior during the unitary strokes, showing that positive (negative) changes in entropy production correspond to increases (decreases) in engine efficiency, as expected. Furthermore, we show that under thermal reservoirs a work extraction process that is more efficient than the Carnot engine is impossible, regardless of the quantum resource introduced via the Hamiltonian of the system.
Collapse
Affiliation(s)
- Richard Q Matos
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia - GO, Brazil
| | - Rogério J de Assis
- Departamento de Física, Universidade Federal de São Carlos, 13.565-905, São Carlos - São Paulo, Brazil
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia - GO, Brazil
| |
Collapse
|
6
|
Fadler P, Friedenberger A, Lutz E. Efficiency at Maximum Power of a Carnot Quantum Information Engine. PHYSICAL REVIEW LETTERS 2023; 130:240401. [PMID: 37390443 DOI: 10.1103/physrevlett.130.240401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2023] [Indexed: 07/02/2023]
Abstract
Optimizing the performance of thermal machines is an essential task of thermodynamics. We here consider the optimization of information engines that convert information about the state of a system into work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at maximum power valid for arbitrary working media. We further investigate the optimal performance of a qubit information engine subjected to weak energy measurements.
Collapse
Affiliation(s)
- Paul Fadler
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Alexander Friedenberger
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
7
|
Purkait C, Biswas A. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times. Phys Rev E 2023; 107:054110. [PMID: 37329072 DOI: 10.1103/physreve.107.054110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/14/2023] [Indexed: 06/18/2023]
Abstract
We have studied the performance of a measurement-based quantum Otto engine (QOE) in a working system of two spins coupled by Heisenberg anisotropic interaction. A nonselective quantum measurement fuels the engine. We have calculated thermodynamic quantities of the cycle in terms of the transition probabilities between the instantaneous energy eigenstates, and also between the instantaneous energy eigenstates and the basis states of the measurement, when the unitary stages of the cycle operate for a finite time τ. The efficiency attains a large value in the limit of τ→0 and then gradually reaches the adiabatic value in a long-time limit τ→∞. For finite values of τ and for anisotropic interaction, an oscillatory behavior of the efficiency of the engine is observed. This oscillation can be interpreted in terms of interference between the relevant transition amplitudes in the unitary stages of the engine cycle. Therefore, for a suitable choice of timing of the unitary processes in the short time regime, the engine can have a higher work output and less heat absorption, such that it works more efficiently than a quasistatic engine. In the case of an always-on heat bath, in a very short time, the bath has a negligible effect on its performance.
Collapse
Affiliation(s)
- Chayan Purkait
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
8
|
Zou CJ, Li Y, Xu JK, You JB, Png CE, Yang WL. Geometrical Bounds on Irreversibility in Squeezed Thermal Bath. ENTROPY (BASEL, SWITZERLAND) 2023; 25:128. [PMID: 36673269 PMCID: PMC9858152 DOI: 10.3390/e25010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing, respectively. We find that the geometrical bounds of the IEP always shift in a contrary way under dissipation and dephasing, where the lower and upper bounds turning to be tighter occur in the situation of dephasing and dissipation, respectively. However, either under dissipation or under dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds for reaching an equilibrium by harvesting the benefits of squeezing effects in which the values of the IEP, quantifying the degree of thermodynamic irreversibility, also become smaller. Therefore, due to the nonequilibrium nature of the squeezed thermal bath, the system-bath interaction energy has a prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory with the second law of thermodynamics by involving squeezing of the bath as an available resource, which can improve the performance of quantum thermodynamic devices.
Collapse
Affiliation(s)
- Chen-Juan Zou
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia-Kun Xu
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
| | - Jia-Bin You
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Ching Eng Png
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Wan-Li Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator. Phys Rev E 2022; 106:024137. [PMID: 36110016 DOI: 10.1103/physreve.106.024137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Ω function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Ω function.
Collapse
Affiliation(s)
- Varinder Singh
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Satnam Singh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Turkey
- TÜBÍTAK Research Institute for Fundamental Sciences, 41470 Gebze, Turkey
| |
Collapse
|
10
|
Shastri R, Venkatesh BP. Optimization of asymmetric quantum Otto engine cycles. Phys Rev E 2022; 106:024123. [PMID: 36109960 DOI: 10.1103/physreve.106.024123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We consider the optimization of the work output and fluctuations of a finite-time quantum Otto heat engine cycle consisting of compression and expansion work strokes of unequal duration. The asymmetry of the cycle is characterized by a parameter r_{u} giving the ratio of the times for the compression and expansion work strokes. For such an asymmetric quantum Otto engine cycle, with working substance chosen as a harmonic oscillator or a two-level system, we find that the optimal values of r_{u} maximizing the work output and the reliability (defined as the ratio of average work output to its standard deviation) shows discontinuities as a function of the total time taken for the cycle. Moreover we identify cycles of some specific duration where both the work output and the reliability take their largest values for the same value of the asymmetry parameter r_{u}.
Collapse
Affiliation(s)
- Rahul Shastri
- Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
11
|
Kibe T, Mukhopadhyay A, Roy P. Quantum Thermodynamics of Holographic Quenches and Bounds on the Growth of Entanglement from the Quantum Null Energy Condition. PHYSICAL REVIEW LETTERS 2022; 128:191602. [PMID: 35622045 DOI: 10.1103/physrevlett.128.191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The quantum null energy condition (QNEC) is a lower bound on the energy-momentum tensor in terms of the variation of the entanglement entropy of a subregion along a null direction. To gain insights into quantum thermodynamics of many-body systems, we study if the QNEC restricts irreversible entropy production in quenches driven by energy-momentum inflow from an infinite memoryless bath in two-dimensional holographic theories. We find that an increase in both entropy and temperature, as implied by the Clausius inequality of classical thermodynamics, is necessary but not sufficient to not violate QNEC in quenches leading to transitions between thermal states with momentums that are dual to Banados-Teitelboim-Zanelli geometries. For an arbitrary initial state, we can determine the lower and upper bounds on the increase of entropy (temperature) for a fixed increase in temperature (entropy). Our results provide explicit instances of quantum lower and upper bounds on irreversible entropy production whose existence has been established in literature. We also find monotonic behavior of the nonsaturation of the QNEC with time after a quench, and analytically determine their asymptotic values. Our study shows that the entanglement entropy of an interval of length l always thermalizes in time l/2 with an exponent 3/2. Furthermore, we determine the coefficient of initial quadratic growth of entanglement analytically for any l, and show that the slope of the asymptotic ballistic growth of entanglement for a semi-infinite interval is twice the difference of the entropy densities of the final and initial states. We determine explicit upper and lower bounds on these rates of growth of entanglement.
Collapse
Affiliation(s)
- Tanay Kibe
- Center for Quantum Information Theory of Matter and Spacetime, and Center for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ayan Mukhopadhyay
- Center for Quantum Information Theory of Matter and Spacetime, and Center for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pratik Roy
- Center for Quantum Information Theory of Matter and Spacetime, and Center for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Ji W, Chai Z, Wang M, Guo Y, Rong X, Shi F, Ren C, Wang Y, Du J. Spin Quantum Heat Engine Quantified by Quantum Steering. PHYSICAL REVIEW LETTERS 2022; 128:090602. [PMID: 35302812 DOI: 10.1103/physrevlett.128.090602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Following the rising interest in quantum information science, the extension of a heat engine to the quantum regime by exploring microscopic quantum systems has seen a boon of interest in the last decade. Although quantum coherence in the quantum system of the working medium has been investigated to play a nontrivial role, a complete understanding of the intrinsic quantum advantage of quantum heat engines remains elusive. We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath is critical for the quantum advantage of a quantum Szilárd engine, where quantum coherence in the working medium is naturally excluded. By quantifying the nonclassical correlation through quantum steering, we reveal that the heat engine is quantum when the demon can truly steer the working medium. The average work obtained by taking different ways of work extraction on the working medium can be used to verify the real quantum Szilárd engine.
Collapse
Affiliation(s)
- Wentao Ji
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zihua Chai
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mengqi Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuhang Guo
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Changliang Ren
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Candeloro A, Razzoli L, Bordone P, Paris MGA. Role of topology in determining the precision of a finite thermometer. Phys Rev E 2021; 104:014136. [PMID: 34412220 DOI: 10.1103/physreve.104.014136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Temperature fluctuations of a finite system follow the Landau bound δT^{2}=T^{2}/C(T) where C(T) is the heat capacity of the system. In turn, the same bound sets a limit to the precision of temperature estimation when the system itself is used as a thermometer. In this paper, we employ graph theory and the concept of Fisher information to assess the role of topology on the thermometric performance of a given system. We find that low connectivity is a resource to build precise thermometers working at low temperatures, whereas highly connected systems are suitable for higher temperatures. Upon modeling the thermometer as a set of vertices for the quantum walk of an excitation, we compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
Collapse
Affiliation(s)
- Alessandro Candeloro
- Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, I-20133 Milan, Italy
| | - Luca Razzoli
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
| | - Paolo Bordone
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena, Italy.,Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
| | - Matteo G A Paris
- Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, I-20133 Milan, Italy.,INFN, Sezione di Milano, I-20133 Milan, Italy
| |
Collapse
|
14
|
Miller HJD, Mohammady MH, Perarnau-Llobet M, Guarnieri G. Joint statistics of work and entropy production along quantum trajectories. Phys Rev E 2021; 103:052138. [PMID: 34134351 DOI: 10.1103/physreve.103.052138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/30/2021] [Indexed: 11/07/2022]
Abstract
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the system's evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, then we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.
Collapse
Affiliation(s)
- Harry J D Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - M Hamed Mohammady
- RCQI, Institute of Physics, Slovak Academy of Sciences, Bratislava 84511, Slovakia
| | | | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland.,Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
15
|
Miller HJD, Mohammady MH, Perarnau-Llobet M, Guarnieri G. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. PHYSICAL REVIEW LETTERS 2021; 126:210603. [PMID: 34114847 DOI: 10.1103/physrevlett.126.210603] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Thermodynamic uncertainty relations express a trade-off between precision, defined as the noise-to-signal ratio of a generic current, and the amount of associated entropy production. These results have deep consequences for autonomous heat engines operating at steady state, imposing an upper bound for their efficiency in terms of the power yield and its fluctuations. In the present Letter we analyze a different class of heat engines, namely, those which are operating in the periodic slow-driving regime. We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines that produce finite power, with small power fluctuations, to operate close to reversibility. The bound further incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion heat engine.
Collapse
Affiliation(s)
- Harry J D Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - M Hamed Mohammady
- RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
| | | | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
16
|
Jiao G, Zhu S, He J, Ma Y, Wang J. Fluctuations in irreversible quantum Otto engines. Phys Rev E 2021; 103:032130. [PMID: 33862833 DOI: 10.1103/physreve.103.032130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/07/2022]
Abstract
We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent work fluctuations, average work, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. The effects of the irreversibility originating from finite-time cycle operation on the thermodynamic efficiency, work fluctuations, and relative power fluctuations are discussed.
Collapse
Affiliation(s)
- Guangqian Jiao
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Shoubao Zhu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A. A quantum heat engine driven by atomic collisions. Nat Commun 2021; 12:2063. [PMID: 33824327 PMCID: PMC8024360 DOI: 10.1038/s41467-021-22222-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/05/2021] [Indexed: 12/02/2022] Open
Abstract
Quantum heat engines are subjected to quantum fluctuations related to their discrete energy spectra. Such fluctuations question the reliable operation of thermal machines in the quantum regime. Here, we realize an endoreversible quantum Otto cycle in the large quasi-spin states of Cesium impurities immersed in an ultracold Rubidium bath. Endoreversible machines are internally reversible and irreversible losses only occur via thermal contact. We employ quantum control to regulate the direction of heat transfer that occurs via inelastic spin-exchange collisions. We further use full-counting statistics of individual atoms to monitor quantized heat exchange between engine and bath at the level of single quanta, and additionally evaluate average and variance of the power output. We optimize the performance as well as the stability of the quantum heat engine, achieving high efficiency, large power output and small power output fluctuations. Designing reliable nanoscale quantum-heat engines achieving high efficiency, high power and high stability is of fundamental and practical interest. Here, the authors report the realization of such a quantum machine using individual neutral Cs atoms in an atomic Rb bath, in which quantized heat exchange via inelastic spin-exchange collisions is controlled at the level of single quanta.
Collapse
Affiliation(s)
- Quentin Bouton
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Jens Nettersheim
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Sabrina Burgardt
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Daniel Adam
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, Stuttgart, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
18
|
Chand S, Dasgupta S, Biswas A. Finite-time performance of a single-ion quantum Otto engine. Phys Rev E 2021; 103:032144. [PMID: 33862721 DOI: 10.1103/physreve.103.032144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence, whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
Collapse
Affiliation(s)
- Suman Chand
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
19
|
Irreversible work and Maxwell demon in terms of quantum thermodynamic force. Sci Rep 2021; 11:2301. [PMID: 33504852 PMCID: PMC7840741 DOI: 10.1038/s41598-021-81737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The second law of classical equilibrium thermodynamics, based on the positivity of entropy production, asserts that any process occurs only in a direction that some information may be lost (flow out of the system) due to the irreversibility inside the system. However, any thermodynamic system can exhibit fluctuations in which negative entropy production may be observed. In particular, in stochastic quantum processes due to quantum correlations and also memory effects we may see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow of information into the system that leads to the negativity of the entropy production which is an apparent violation of the Second Law. In order to resolve this apparent violation, we will try to properly extend the Second Law to quantum processes by incorporating information explicitly into the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow of information. Finally, it is shown that negative and positive entropy production can be described by a quantum thermodynamic force.
Collapse
|
20
|
Singh V, Müstecaplıoğlu ÖE. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Phys Rev E 2021; 102:062123. [PMID: 33466082 DOI: 10.1103/physreve.102.062123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022]
Abstract
We analyze the performance of a quantum Otto cycle, employing a time-dependent harmonic oscillator as the working fluid undergoing sudden expansion and compression strokes during the adiabatic stages, coupled to a squeezed reservoir. First, we show that the maximum efficiency that our engine can achieve is 1/2 only, which is in contrast with earlier studies claiming unit efficiency under the effect of a squeezed reservoir. Then, in the high-temperature limit, we obtain analytic expressions for the upper bound on the efficiency as well as on the coefficient of performance of the Otto cycle. The obtained bounds are independent of the parameters of the system and depend on the reservoir parameters only. Additionally, with a hot squeezed thermal bath, we obtain an analytic expression for the efficiency at maximum work which satisfies the derived upper bound. Further, in the presence of squeezing in the cold reservoir, we specify an operational regime for the Otto refrigerator otherwise forbidden in the standard case. Finally, we find the cost of creating a squeezed state from the thermal state and show that in order to harvest the benefits of squeezing, it is sufficient to squeeze only one mode of the reservoir in resonance with the transition frequency of the working fluid. Further, we show that when the cost of squeezing is included in the definition of the operational efficiency of the engine, the advantages of squeezing fade away. Still, being purely quantum mechanical fuel in nature, squeezed reservoirs are beneficial in their own way by providing us with more compact energy storage medium or offering effectively high-temperature baths without being actually too hot.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Turkey
| | | |
Collapse
|
21
|
Francica G, Binder FC, Guarnieri G, Mitchison MT, Goold J, Plastina F. Quantum Coherence and Ergotropy. PHYSICAL REVIEW LETTERS 2020; 125:180603. [PMID: 33196219 DOI: 10.1103/physrevlett.125.180603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Constraints on work extraction are fundamental to our operational understanding of the thermodynamics of both classical and quantum systems. In the quantum setting, finite-time control operations typically generate coherence in the instantaneous energy eigenbasis of the dynamical system. Thermodynamic cycles can, in principle, be designed to extract work from this nonequilibrium resource. Here, we isolate and study the quantum coherent component to the work yield in such protocols. Specifically, we identify a coherent contribution to the ergotropy (the maximum amount of unitarily extractable work via cyclical variation of Hamiltonian parameters). We show this by dividing the optimal transformation into an incoherent operation and a coherence extraction cycle. We obtain bounds for both the coherent and incoherent parts of the extractable work and discuss their saturation in specific settings. Our results are illustrated with several examples, including finite-dimensional systems and bosonic Gaussian states that describe recent experiments on quantum heat engines with a quantized load.
Collapse
Affiliation(s)
- G Francica
- CNR-SPIN, I-84084 Fisciano (Salerno), Italy
| | - F C Binder
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - G Guarnieri
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - M T Mitchison
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - J Goold
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - F Plastina
- Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza
| |
Collapse
|
22
|
Elouard C, Thomas G, Maillet O, Pekola JP, Jordan AN. Quantifying the quantum heat contribution from a driven superconducting circuit. Phys Rev E 2020; 102:030102. [PMID: 33075879 DOI: 10.1103/physreve.102.030102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
Heat flow management at the nanoscale is of great importance for emergent quantum technologies. For instance, a thermal sink that can be activated on-demand is a highly desirable tool that may accommodate the need to evacuate excess heat at chosen times, e.g., to maintain cryogenic temperatures or reset a quantum system to ground, and the possibility of controlled unitary evolution otherwise. Here we propose a design of such heat switch based on a single coherently driven qubit. We show that the heat flow provided by a hot source to the qubit can be switched on and off by varying external parameters, the frequency and the intensity of the driving. The complete suppression of the heat flow is a quantum effect occurring for specific driving parameters that we express and we analyze the role of the coherences in the free-qubit energy eigenbasis. We finally study the feasibility of this quantum heat switch in a circuit QED setup involving a charge qubit coupled to thermal resistances. We demonstrate robustness to experimental imperfections such as additional decoherence, paving the road towards experimental verification of this effect.
Collapse
Affiliation(s)
- Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - George Thomas
- QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Olivier Maillet
- QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - J P Pekola
- QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - A N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.,Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| |
Collapse
|
23
|
Peterson JPS, Batalhão TB, Herrera M, Souza AM, Sarthour RS, Oliveira IS, Serra RM. Experimental Characterization of a Spin Quantum Heat Engine. PHYSICAL REVIEW LETTERS 2019; 123:240601. [PMID: 31922824 DOI: 10.1103/physrevlett.123.240601] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Developments in the thermodynamics of small quantum systems envisage nonclassical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at a microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (η≈42%) very close to its thermodynamic limit (η=44%).
Collapse
Affiliation(s)
- John P S Peterson
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Tiago B Batalhão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Marcela Herrera
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
| | - Alexandre M Souza
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivan S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto M Serra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
| |
Collapse
|
24
|
Kallush S, Aroch A, Kosloff R. Quantifying the Unitary Generation of Coherence from Thermal Quantum Systems. ENTROPY 2019; 21:e21080810. [PMID: 33267523 PMCID: PMC7515339 DOI: 10.3390/e21080810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
Abstract
Coherence is associated with transient quantum states; in contrast, equilibrium thermal quantum systems have no coherence. We investigate the quantum control task of generating maximum coherence from an initial thermal state employing an external field. A completely controllable Hamiltonian is assumed allowing the generation of all possible unitary transformations. Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy distribution on the diagonal energy representation. We demonstrate such a control scenario starting from a given Hamiltonian applying an external field, reaching the control target. Such an optimization task is found to be trap-less. By constraining the amount of energy invested by the control, maximum coherence leads to a canonical energy population distribution. When the optimization procedure constrains the final energy too tightly, local suboptimal traps are found. The global optimum is obtained when a small Lagrange multiplier is employed to constrain the final energy. Finally, we explore the task of generating coherences restricted to be close to the diagonal of the density matrix in the energy representation.
Collapse
Affiliation(s)
- Shimshon Kallush
- Department of Physics and Optical Engineering, ORT-Braude College, 21982 Karmiel, Israel
- The Fritz Haber Research Center, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- Correspondence:
| | - Aviv Aroch
- The Fritz Haber Research Center, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Ronnie Kosloff
- The Fritz Haber Research Center, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
25
|
Dann R, Tobalina A, Kosloff R. Shortcut to Equilibration of an Open Quantum System. PHYSICAL REVIEW LETTERS 2019; 122:250402. [PMID: 31347905 DOI: 10.1103/physrevlett.122.250402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Indexed: 06/10/2023]
Abstract
We present a procedure to accelerate the relaxation of an open quantum system towards its equilibrium state. The control protocol, termed the shortcut to equilibration, is obtained by reverse-engineering the nonadiabatic master equation. This is a nonunitary control task aimed at rapidly changing the entropy of the system. Such a protocol serves as a shortcut to an abrupt change in the Hamiltonian, i.e., a quench. As an example, we study the thermalization of a particle in a harmonic well. We observe that for short protocols the accuracy improves by 3 orders of magnitude.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Ander Tobalina
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apdo 644, Bilbao, Spain
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
26
|
de Assis RJ, de Mendonça TM, Villas-Boas CJ, de Souza AM, Sarthour RS, Oliveira IS, de Almeida NG. Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures. PHYSICAL REVIEW LETTERS 2019; 122:240602. [PMID: 31322364 DOI: 10.1103/physrevlett.122.240602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/02/2019] [Indexed: 06/10/2023]
Abstract
We perform an experiment in which a quantum heat engine works under two reservoirs, one at a positive spin temperature and the other at an effective negative spin temperature, i.e., when the spin system presents population inversion. We show that the efficiency of this engine can be greater than that when both reservoirs are at positive temperatures. We also demonstrate the counterintuitive result that the Otto efficiency can be beaten only when the quantum engine is operating in the finite-time mode.
Collapse
Affiliation(s)
- Rogério J de Assis
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia-GO, Brazil
| | - Taysa M de Mendonça
- Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Celso J Villas-Boas
- Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Alexandre M de Souza
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivan S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia-GO, Brazil
| |
Collapse
|
27
|
Francica G, Goold J, Plastina F. Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys Rev E 2019; 99:042105. [PMID: 31108617 DOI: 10.1103/physreve.99.042105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 06/09/2023]
Abstract
Exploiting the relative entropy of coherence, we isolate the coherent contribution in the energetics of a driven nonequilibrium quantum system. We prove that a division of the irreversible work can be made into a coherent and incoherent part. This provides an operational criterion for quantifying the coherent contribution in a generic nonequilibrium transformation on a closed quantum system. We then study such a contribution in two physical models of a driven qubit and kicked rotor. In addition, we also show that coherence generation is connected to the nonadiabaticity of a processes, for which it gives the dominant contribution for slow-enough transformations. The amount of generated coherence in the energy eigenbasis is equivalent to the change in diagonal entropy, and here we show that it fulfills a fluctuation theorem.
Collapse
Affiliation(s)
- G Francica
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| | - J Goold
- School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - F Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| |
Collapse
|
28
|
Klatzow J, Becker JN, Ledingham PM, Weinzetl C, Kaczmarek KT, Saunders DJ, Nunn J, Walmsley IA, Uzdin R, Poem E. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. PHYSICAL REVIEW LETTERS 2019; 122:110601. [PMID: 30951320 DOI: 10.1103/physrevlett.122.110601] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.
Collapse
Affiliation(s)
- James Klatzow
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jonas N Becker
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Patrick M Ledingham
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Christian Weinzetl
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Krzysztof T Kaczmarek
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Groupe de Physique Appliquée, Université de Genéve, CH-1211 Genéve, Switzerland
| | - Dylan J Saunders
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Joshua Nunn
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ian A Walmsley
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Raam Uzdin
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eilon Poem
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Çakmak B, Müstecaplıoğlu ÖE. Spin quantum heat engines with shortcuts to adiabaticity. Phys Rev E 2019; 99:032108. [PMID: 30999442 DOI: 10.1103/physreve.99.032108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 06/09/2023]
Abstract
We consider a finite-time quantum Otto cycle with single- and two spin-1/2 systems as its working medium. To mimic adiabatic dynamics at a finite time, we employ a shortcut-to-adiabaticity technique and evaluate the performance of the engine including the cost of the shortcut. We compare our results with the true adiabatic and nonadiabatic performances of the same cycle. Our findings indicate that the use of the shortcut-to-adiabaticity scheme significantly enhances the performance of the quantum Otto engine as compared to its adiabatic and nonadiabatic counterparts for different figures of merit.
Collapse
Affiliation(s)
- Barış Çakmak
- Department of Physics, Koç University, İstanbul, Sarıyer 34450, Turkey
- College of Engineering and Natural Sciences, Bahçeşehir University, Beşiktaş, Istanbul 34353, Turkey
| | | |
Collapse
|
30
|
Abah O, Paternostro M. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics. Phys Rev E 2019; 99:022110. [PMID: 30934342 DOI: 10.1103/physreve.99.022110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 06/09/2023]
Abstract
We consider a finite-time Otto engine operating on a quantum harmonic oscillator and driven by shortcut-to-adiabaticity (STA) techniques to speed up its cycle. We study its efficiency and power when internal friction, time-averaged work, and work fluctuations are used as quantitative figures of merit, showing that time-averaged efficiency and power are useful cost functions for the characterization of the performance of the engine. We then use the minimum allowed time for validity of STA protocol relation to establish a physically relevant bound to the efficiency at maximum power of the STA-driven cycle.
Collapse
Affiliation(s)
- Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
31
|
Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V, Matsukevich D. Quantum absorption refrigerator with trapped ions. Nat Commun 2019; 10:202. [PMID: 30643131 PMCID: PMC6331551 DOI: 10.1038/s41467-018-08090-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
In recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime made possible by coherence and demonstrate cooling below both the steady-state energy and a benchmark set by classical thermodynamics.
Collapse
Affiliation(s)
- Gleb Maslennikov
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Shiqian Ding
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Roland Hablützel
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jaren Gan
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Alexandre Roulet
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jibo Dai
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Valerio Scarani
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore
| | - Dzmitry Matsukevich
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore. .,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore.
| |
Collapse
|
32
|
Jaramillo JD, Deng J, Gong J. Quantum work fluctuations in connection with the Jarzynski equality. Phys Rev E 2018; 96:042119. [PMID: 29347528 DOI: 10.1103/physreve.96.042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/07/2022]
Abstract
A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.
Collapse
Affiliation(s)
- Juan D Jaramillo
- Department of Physics, National University of Singapore, Singapore 117546
| | - Jiawen Deng
- NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| | - Jiangbin Gong
- Department of Physics, National University of Singapore, Singapore 117546.,NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| |
Collapse
|
33
|
Introduction to Quantum Thermodynamics: History and Prospects. FUNDAMENTAL THEORIES OF PHYSICS 2018. [DOI: 10.1007/978-3-319-99046-0_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
Hardal AÜC, Aslan N, Wilson CM, Müstecaplıoğlu ÖE. Quantum heat engine with coupled superconducting resonators. Phys Rev E 2017; 96:062120. [PMID: 29347310 DOI: 10.1103/physreve.96.062120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 11/07/2022]
Abstract
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
Collapse
Affiliation(s)
- Ali Ü C Hardal
- Department of Physics, Koç University, Sarıyer, İstanbul, 34450, Turkey.,Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark
| | - Nur Aslan
- Department of Physics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - C M Wilson
- Institute of Quantum Computing and Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
35
|
Sachtleben K, Mazon KT, Rego LGC. Superconducting Qubits as Mechanical Quantum Engines. PHYSICAL REVIEW LETTERS 2017; 119:090601. [PMID: 28949578 DOI: 10.1103/physrevlett.119.090601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 06/07/2023]
Abstract
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Collapse
Affiliation(s)
- Kewin Sachtleben
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Kahio T Mazon
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
36
|
Lorenzo S, Marino J, Plastina F, Palma GM, Apollaro TJG. Quantum Critical Scaling under Periodic Driving. Sci Rep 2017; 7:5672. [PMID: 28720852 PMCID: PMC5515946 DOI: 10.1038/s41598-017-06025-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/07/2017] [Indexed: 12/02/2022] Open
Abstract
Universality is key to the theory of phase transitions, stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model’s microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time τbd, proportional to the size of the system. This behaviour is explained by noticing that the low-energy modes, responsible for the scaling properties, are resilient to the absorption of energy. Our results suggest that relevant features of the universality do hold also when the system is brought out-of-equilibrium by a periodic driving.
Collapse
Affiliation(s)
- Salvatore Lorenzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Archirafi 36, I-90123, Palermo, Italy.,Quantum Technology Lab, Dipartimento di Fisica, Universita' degli Studi di Milano, 20133, Milano, Italy.,INFN, Sezione di Milano, I-20133, Milano, Italy
| | - Jamir Marino
- Institute of Theoretical Physics, University of Cologne, D-50937, Cologne, Germany
| | - Francesco Plastina
- Dip. Fisica, Università della Calabria, 87036, Arcavacata di Rende (CS), Italy.,INFN - Gruppo collegato di Cosenza, Cosenza, Italy
| | - G Massimo Palma
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Archirafi 36, I-90123, Palermo, Italy.,NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | - Tony J G Apollaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Archirafi 36, I-90123, Palermo, Italy. .,Quantum Technology Lab, Dipartimento di Fisica, Universita' degli Studi di Milano, 20133, Milano, Italy. .,NEST, Istituto Nanoscienze-CNR, Pisa, Italy. .,Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom.
| |
Collapse
|
37
|
|
38
|
Rényi Divergences, Bures Geometry and Quantum Statistical Thermodynamics. ENTROPY 2016. [DOI: 10.3390/e18120455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Feldmann T, Kosloff R. Transitions between refrigeration regions in extremely short quantum cycles. Phys Rev E 2016; 93:052150. [PMID: 27300872 DOI: 10.1103/physreve.93.052150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/07/2022]
Abstract
The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.
Collapse
Affiliation(s)
- Tova Feldmann
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ronnie Kosloff
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
40
|
|
41
|
Lorenzo S, McCloskey R, Ciccarello F, Paternostro M, Palma GM. Landauer's Principle in Multipartite Open Quantum System Dynamics. PHYSICAL REVIEW LETTERS 2015; 115:120403. [PMID: 26430974 DOI: 10.1103/physrevlett.115.120403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/05/2023]
Abstract
We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for heat and entropy power can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
Collapse
Affiliation(s)
- S Lorenzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo, Italy
- Dipartimento Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN - Gruppo collegato di Cosenza, Cosenza, Italy
| | - R McCloskey
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - F Ciccarello
- NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
| | - M Paternostro
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - G M Palma
- NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
| |
Collapse
|
42
|
Bayocboc FA, Paraan FNC. Exact work statistics of quantum quenches in the anisotropic XY model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032142. [PMID: 26465461 DOI: 10.1103/physreve.92.032142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 06/05/2023]
Abstract
We derive exact analytic expressions for the average work done and work fluctuations in instantaneous quenches of the ground and thermal states of a one-dimensional anisotropic XY model. The average work and a quantum fluctuation relation is used to determine the amount of irreversible entropy produced during the quench, eventually revealing how the closing of the excitation gap leads to increased dissipated work. The work fluctuation is calculated and shown to exhibit nonanalytic behavior as the prequench anisotropy parameter and transverse field are tuned across quantum critical points. Exact compact formulas for the average work and work fluctuation in ground state quenches of the transverse field Ising model allow us to calculate the first singular field derivative at the critical field values.
Collapse
Affiliation(s)
- Francis A Bayocboc
- National Institute of Physics, University of the Philippines Diliman, 1101 Quezon City, Philippines
| | - Francis N C Paraan
- National Institute of Physics, University of the Philippines Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
43
|
Sharma S, Dutta A. One- and two-dimensional quantum models: Quenches and the scaling of irreversible entropy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022108. [PMID: 26382345 DOI: 10.1103/physreve.92.022108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 06/05/2023]
Abstract
Using the scaling relation of the ground state quantum fidelity, we propose the most generic scaling relations of the irreversible work (the residual energy) of a closed quantum system at absolute zero temperature when one of the parameters of its Hamiltonian is suddenly changed. We consider two extreme limits: the heat susceptibility limit and the thermodynamic limit. It is argued that the irreversible entropy generated for a thermal quench at low enough temperatures when the system is initially in a Gibbs state is likely to show a similar scaling behavior. To illustrate this proposition, we consider zero-temperature and thermal quenches in one-dimensional (1D) and 2D Dirac Hamiltonians where the exact estimation of the irreversible work and the irreversible entropy is possible. Exploiting these exact results, we then establish the following. (i) The irreversible work at zero temperature shows an appropriate scaling in the thermodynamic limit. (ii) The scaling of the irreversible work in the 1D Dirac model at zero temperature shows logarithmic corrections to the scaling, which is a signature of a marginal situation. (iii) Remarkably, the logarithmic corrections do indeed appear in the scaling of the entropy generated if the temperature is low enough while they disappear for high temperatures. For the 2D model, no such logarithmic correction is found to appear.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Physics, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Dutta
- Department of Physics, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
44
|
Wang J, Ye Z, Lai Y, Li W, He J. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062134. [PMID: 26172688 DOI: 10.1103/physreve.91.062134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 06/04/2023]
Abstract
We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures T(h) and T(c)(<T(h)), respectively, and it is tuned slowly along a protocol to realize an adiabatic process. To illustrate the performance in finite time of the quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency η(C)(=1-T(c)/T(h)): η*≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yiming Lai
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Weisheng Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| |
Collapse
|
45
|
Sindona A, Pisarra M, Gravina M, Vacacela Gomez C, Riccardi P, Falcone G, Plastina F. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:755-66. [PMID: 25977846 PMCID: PMC4419685 DOI: 10.3762/bjnano.6.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 05/27/2023]
Abstract
The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
Collapse
Affiliation(s)
- Antonello Sindona
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Michele Pisarra
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Mario Gravina
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Cristian Vacacela Gomez
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Pierfrancesco Riccardi
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Giovanni Falcone
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| | - Francesco Plastina
- Dipartimento di Fisica, Università della Calabria, Cubo 30C, 87036 Rende (CS), Italy
- INFN, sezione LNF, Gruppo collegato di Cosenza, Cubo 31C, 87036 Rende (CS), Italy
| |
Collapse
|
46
|
Binder F, Vinjanampathy S, Modi K, Goold J. Quantum thermodynamics of general quantum processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032119. [PMID: 25871066 DOI: 10.1103/physreve.91.032119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Collapse
Affiliation(s)
- Felix Binder
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Sai Vinjanampathy
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| | - Kavan Modi
- School of Physics, Monash University, Clayton, Victoria 3800, Australia
| | - John Goold
- The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|