1
|
Hoffmann DK, Singh VP, Paintner T, Jäger M, Limmer W, Mathey L, Hecker Denschlag J. Second sound in the crossover from the Bose-Einstein condensate to the Bardeen-Cooper-Schrieffer superfluid. Nat Commun 2021; 12:7074. [PMID: 34873169 PMCID: PMC8648831 DOI: 10.1038/s41467-021-27149-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Second sound is an entropy wave which propagates in the superfluid component of a quantum liquid. Because it is an entropy wave, it probes the thermodynamic properties of the quantum liquid. Here, we study second sound propagation for a large range of interaction strengths within the crossover between a Bose-Einstein condensate (BEC) and the Bardeen-Cooper-Schrieffer (BCS) superfluid, extending previous work at unitarity. In particular, we investigate the strongly-interacting regime where currently theoretical predictions only exist in terms of an interpolation in the crossover. Working with a quantum gas of ultracold fermionic 6Li atoms with tunable interactions, we show that the second sound speed varies only slightly in the crossover regime. By varying the excitation procedure, we gain deeper insight on sound propagation. We compare our measurement results with classical-field simulations, which help with the interpretation of our experiments.
Collapse
Affiliation(s)
- Daniel K Hoffmann
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069, Ulm, Germany
| | - Vijay Pal Singh
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
- Institut für Laserphysik, Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761, Hamburg, Germany
| | - Thomas Paintner
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069, Ulm, Germany
| | - Manuel Jäger
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069, Ulm, Germany
| | - Wolfgang Limmer
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069, Ulm, Germany
| | - Ludwig Mathey
- Institut für Laserphysik, Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761, Hamburg, Germany
- The Hamburg center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Johannes Hecker Denschlag
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069, Ulm, Germany.
| |
Collapse
|
2
|
Long Y, Xiong F, Parker CV. Spin Susceptibility above the Superfluid Onset in Ultracold Fermi Gases. PHYSICAL REVIEW LETTERS 2021; 126:153402. [PMID: 33929234 DOI: 10.1103/physrevlett.126.153402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Ultracold atomic Fermi gases can be tuned to interact strongly, which produces a display of spectroscopic signatures above the superfluid transition reminiscent of the pseudogap in cuprates. However, the extent of the analogy can be questioned since many thermodynamic quantities in the low temperature spin-imbalanced normal state can be described successfully using Fermi liquid theory. Here we present spin susceptibility measurements across the interaction strength-temperature phase diagram using a novel radio frequency technique with ultracold ^{6}Li gases. For all significant interaction strengths and at all temperatures we find the spin susceptibility is reduced compared to the equivalent value for a noninteracting Fermi gas. At unitarity, we can use the local density approximation to extract the integrated spin susceptibility for the uniform gas as a function of temperature, which at high temperatures is generally less than theoretically predicted. At low temperatures, our data lie within the range of theoretical predictions, although we can also describe the entire curve using a very simple one-parameter mean field model with monotonically increasing spin susceptibility.
Collapse
Affiliation(s)
- Yun Long
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Feng Xiong
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Colin V Parker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
3
|
Mukherjee B, Patel PB, Yan Z, Fletcher RJ, Struck J, Zwierlein MW. Spectral Response and Contact of the Unitary Fermi Gas. PHYSICAL REVIEW LETTERS 2019; 122:203402. [PMID: 31172778 DOI: 10.1103/physrevlett.122.203402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/09/2023]
Abstract
We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid behavior. From the wings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.
Collapse
Affiliation(s)
- Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julian Struck
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Département de Physique, Ecole Normale Supérieure / PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Lipavský P, Lin PJ. Local conservation laws in ultracold Fermi systems with time-dependent interaction potential. Phys Rev E 2019; 99:052108. [PMID: 31212492 DOI: 10.1103/physreve.99.052108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 06/09/2023]
Abstract
In the context of an ultracold Fermi gas, we derive conservation laws for mass, energy and momentum based on a generalized nonlocal Boltzmann equation with gradient corrections in the collision integral. The corrections are expressed in terms of effective collision duration, particle displacement and changes of total momentum and energy. Their origin is in the in-medium T matrix. Using variations of the optical theorem, we show that in the collision integral the particle-hole symmetry can be recast into a form of collision symmetry amenable to semiclassical simulation. Pauli-blocked collisions are distinguished from Bose-stimulated nondissipative ones; the latter are not present in the absence of gradient corrections. Consolidating with the microscopic theory, we extract local conservation laws for a general time-dependent interaction potential, and demonstrate how both types of collisions affect densities and flows of conserving quantities. Comparison is made with the approach of Nozières and Schmitt-Rink in the limit of thermal equilibrium. Under approximations used for normal-state ultracold Fermi gases interacting via Feshbach resonances we demonstrate the effect of the collision delay on the shear viscosity.
Collapse
Affiliation(s)
- P Lipavský
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Pei-Jen Lin
- Universal Analytics Inc., Airdrie, Alberta, Canada
| |
Collapse
|
5
|
Abstract
Electrical current in conventional metals is carried by electrons that retain their individual character. Bad metals, such as the normal state of some high-temperature superconductors, violate this scenario, and the complete picture for their behavior remains unresolved. Here, we report phenomena consistent with bad-metal behaviour in an optical-lattice Hubbard model by measuring the transport lifetime for a mass current excited by stimulated Raman transitions. We demonstrate incompatibility with weak-scattering theory and key characteristics of bad metals: anomalous resistivity scaling consistent with T-linear behavior, the onset of incoherent transport, and the approach to the Mott–Ioffe–Regel limit. Our work demonstrates a direct method for determining the transport lifetime, which is critical to theory but difficult to measure in materials, and exposes minimal ingredients for bad-metal behavior. The origin of bad-metal resistivity is a long-standing problem for condensed matter physics. Here the authors show anomalous resistivity, transport lifetime, and relaxation dynamics consistent with bad-metal behavior over a wide range of temperature for fermionic potassium atoms in optical lattices.
Collapse
|
6
|
Shkedrov C, Florshaim Y, Ness G, Gandman A, Sagi Y. High-Sensitivity rf Spectroscopy of a Strongly Interacting Fermi Gas. PHYSICAL REVIEW LETTERS 2018; 121:093402. [PMID: 30230882 DOI: 10.1103/physrevlett.121.093402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Indexed: 06/08/2023]
Abstract
rf spectroscopy is one of the most powerful probing techniques in the field of ultracold gases. We report on a novel rf spectroscopy scheme with which we can detect very weak signals of only a few atoms. Using this method, we extended the experimentally accessible photon-energies range by an order of magnitude compared to previous studies. We directly verify a universal property of fermions with short-range interactions which is a power-law scaling of the rf spectrum tail all the way up to the interaction scale. We also determine, with high precision, the trap average contact parameter for different interaction strength. Finally, we employ our technique to precisely measure the binding energy of Feshbach molecules in an extended range of magnetic fields. These data are used to extract a new calibration of the Feshbach resonance between the two lowest energy levels of ^{40}K.
Collapse
Affiliation(s)
- Constantine Shkedrov
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yanay Florshaim
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Ness
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Andrey Gandman
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Sagi
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
7
|
Murthy PA, Neidig M, Klemt R, Bayha L, Boettcher I, Enss T, Holten M, Zürn G, Preiss PM, Jochim S. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 2018; 359:452-455. [DOI: 10.1126/science.aan5950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/06/2017] [Indexed: 11/02/2022]
Affiliation(s)
| | - Mathias Neidig
- Physics Institute, Heidelberg University, Heidelberg, Germany
| | - Ralf Klemt
- Physics Institute, Heidelberg University, Heidelberg, Germany
| | - Luca Bayha
- Physics Institute, Heidelberg University, Heidelberg, Germany
| | - Igor Boettcher
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Tilman Enss
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Marvin Holten
- Physics Institute, Heidelberg University, Heidelberg, Germany
| | - Gerhard Zürn
- Physics Institute, Heidelberg University, Heidelberg, Germany
| | | | - Selim Jochim
- Physics Institute, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Mueller EJ. Review of pseudogaps in strongly interacting Fermi gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:104401. [PMID: 28686169 DOI: 10.1088/1361-6633/aa7e53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A central challenge in modern condensed matter physics is developing the tools for understanding nontrivial yet unordered states of matter. One important idea to emerge in this context is that of a 'pseudogap': the fact that under appropriate circumstances the normal state displays a suppression of the single particle spectral density near the Fermi level, reminiscent of the gaps seen in ordered states of matter. While these concepts arose in a solid state context, they are now being explored in cold gases. This article reviews the current experimental and theoretical understanding of the normal state of strongly interacting Fermi gases, with particular focus on the phenomonology which is traditionally associated with the pseudogap.
Collapse
Affiliation(s)
- Erich J Mueller
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca NY 14853, United States of America
| |
Collapse
|
9
|
Krinner S, Esslinger T, Brantut JP. Two-terminal transport measurements with cold atoms. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:343003. [PMID: 28749788 DOI: 10.1088/1361-648x/aa74a1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics. We present the experimental techniques and the main experimental findings, focusing on-but not restricted to-the recent experiments performed by our group. We finally discuss the perspectives opened up by this approach, the main technical and conceptual challenges for future developments, and potential applications in quantum simulation for transport phenomena and mesoscopic physics problems.
Collapse
Affiliation(s)
- Sebastian Krinner
- Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
10
|
Dutta S, Mueller EJ. Collective Modes of a Soliton Train in a Fermi Superfluid. PHYSICAL REVIEW LETTERS 2017; 118:260402. [PMID: 28707921 DOI: 10.1103/physrevlett.118.260402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 06/07/2023]
Abstract
We characterize the collective modes of a soliton train in a quasi-one-dimensional Fermi superfluid, using a mean-field formalism. In addition to the expected Goldstone and Higgs modes, we find novel long-lived gapped modes associated with oscillations of the soliton cores. The soliton train has an instability that depends strongly on the interaction strength and the spacing of solitons. It can be stabilized by filling each soliton with an unpaired fermion, thus forming a commensurate Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We find that such a state is always dynamically stable, which paves the way for realizing long-lived FFLO states in experiments via phase imprinting.
Collapse
Affiliation(s)
- Shovan Dutta
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Erich J Mueller
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS-BEC crossover. Nat Commun 2016; 7:12843. [PMID: 27687782 PMCID: PMC5056430 DOI: 10.1038/ncomms12843] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022] Open
Abstract
The physics of the crossover between weak-coupling Bardeen–Cooper–Schrieffer (BCS) and strong-coupling Bose–Einstein condensate (BEC) limits gives a unified framework of quantum-bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature Tc=8.5 K has been found to be deep inside the BCS–BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below T*∼20 K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance and transport data give evidence of pseudogap formation at ∼T*. The multiband superconductivity along with electron–hole compensation in FeSe may highlight a novel aspect of the BCS–BEC crossover physics. The crossover between the weak-coupling limit and strong-coupling limit provides important information for quantum bound states of interacting fermions. Here, Kasahara et al. report thermodynamic evidence for prevailing phase fluctuations of superconductivity, highlighting unusual normal state in the BCS-BEC crossover regime.
Collapse
|
12
|
Abstract
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at [Formula: see text] for weak interactions to plateau-like features at nonuniversal values as high as [Formula: see text] for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas.
Collapse
|
13
|
Husmann D, Uchino S, Krinner S, Lebrat M, Giamarchi T, Esslinger T, Brantut JP. Connecting strongly correlated superfluids by a quantum point contact. Science 2015; 350:1498-501. [DOI: 10.1126/science.aac9584] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Cetina M, Jag M, Lous RS, Walraven JTM, Grimm R, Christensen RS, Bruun GM. Decoherence of Impurities in a Fermi Sea of Ultracold Atoms. PHYSICAL REVIEW LETTERS 2015; 115:135302. [PMID: 26451562 DOI: 10.1103/physrevlett.115.135302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 06/05/2023]
Abstract
We investigate the decoherence of ^{40}K impurities interacting with a three-dimensional Fermi sea of ^{6}Li across an interspecies Feshbach resonance. The decoherence is measured as a function of the interaction strength and temperature using a spin-echo atom interferometry method. For weak to moderate interaction strengths, we interpret our measurements in terms of scattering of K quasiparticles by the Fermi sea and find very good agreement with a Fermi liquid calculation. For strong interactions, we observe significant enhancement of the decoherence rate, which is largely independent of temperature, pointing to behavior that is beyond the scattering of quasiparticles in the Fermi liquid picture.
Collapse
Affiliation(s)
- Marko Cetina
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Michael Jag
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rianne S Lous
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Jook T M Walraven
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Rudolf Grimm
- Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rasmus S Christensen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Doggen EVH, Kinnunen JJ. Momentum-resolved spectroscopy of a Fermi liquid. Sci Rep 2015; 5:9539. [PMID: 25941948 PMCID: PMC5386214 DOI: 10.1038/srep09539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift.
Collapse
Affiliation(s)
- Elmer V. H. Doggen
- COMP Centre of Excellence and Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Jami J. Kinnunen
- COMP Centre of Excellence and Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|