1
|
Gerry M, Wang JJ, Li J, Shein-Lumbroso O, Tal O, Segal D. Machine learning delta-T noise for temperature bias estimation. J Chem Phys 2025; 162:084108. [PMID: 40008946 DOI: 10.1063/5.0250879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Delta-T shot noise is activated in temperature-biased electronic junctions, down to the atomic scale. It is characterized by a quadratic dependence on the temperature difference and a nonlinear relationship with the transmission coefficients of partially opened conduction channels. In this work, we demonstrate that delta-T noise, measured across an ensemble of atomic-scale junctions, can be utilized to estimate the temperature bias in these systems. Our approach employs a supervised machine learning algorithm to train a neural network, with input features being the scaled electrical conductance, the delta-T noise, and the mean temperature. Due to limited experimental data, we generate synthetic datasets, designed to mimic experiments. The neural network, trained on these synthetic data, was subsequently applied to predict temperature biases from experimental datasets. Using performance metrics, we demonstrate that the mean bias-the deviation of predicted temperature differences from their true value-is less than 1 K for junctions with conductance up to 4G0. Our study highlights that, while a single delta-T noise measurement is insufficient for accurately estimating the applied temperature bias due to noise contributions from other sources, averaging over an ensemble of junctions enables predictions within experimental uncertainties. This suggests that machine learning approaches can be utilized for estimation of temperature biases and similarly other stimuli in electronic junctions.
Collapse
Affiliation(s)
- Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
| | - Jonathan J Wang
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Joanna Li
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
- Division of Engineering Science, University of Toronto, 42 Saint George St., Toronto, Ontario M5S 2E4, Canada
| | - Ofir Shein-Lumbroso
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Du W, Chen X, Wang T, Lin Q, Nijhuis CA. Tuning Overbias Plasmon Energy and Intensity in Molecular Plasmonic Tunneling Junctions by Atomic Polarizability. J Am Chem Soc 2024; 146:21642-21650. [PMID: 38940772 PMCID: PMC11311224 DOI: 10.1021/jacs.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Plasmon excitation in molecular tunnel junctions is interesting because the plasmonic properties of the device can be, in principle, controlled by varying the chemical structure of the molecules. The plasmon energy of the excited plasmons usually follows the quantum cutoff law, but frequently overbias plasmon energy has been observed, which can be explained by quantum shot noise, multielectron processes, or hot carrier models. So far, clear correlations between molecular structure and the plasmon energy have not been reported. Here, we introduce halogenated molecules (HS(CH2)12X, with X = H, F, Cl, Br, or I) with polarizable terminal atoms as the tunnel barriers and demonstrate molecular control over both the excited plasmon intensity and energy for a given applied voltage. As the polarizability of the terminal atom increases, the tunnel barrier height decreases, resulting in an increase in the tunneling current and the plasmon intensity without changing the tunneling barrier width. We also show that the plasmon energy is controlled by the electrostatic potential drop at the molecule-electrode interface, which depends on the polarizability of the terminal atom and the metal electrode material (Ag, Au, or Pt). Our results give new insights in the relation between molecular structure, electronic structure of the molecular junction, and the plasmonic properties which are important for the development of molecular scale plasmonic-electronic devices.
Collapse
Affiliation(s)
- Wei Du
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Xiaoping Chen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
- Fujian
Provincial Key Laboratory of Modern Analytical Science and Separation
Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Tao Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Qianqi Lin
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| |
Collapse
|
3
|
Tuovinen R, Pavlyukh Y. Electroluminescence Rectification and High Harmonic Generation in Molecular Junctions. NANO LETTERS 2024; 24:9096-9103. [PMID: 38985893 DOI: 10.1021/acs.nanolett.4c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The field of molecular electronics has emerged from efforts to understand electron propagation through single molecules and to use them in electronic circuits. Serving as a testbed for advanced theoretical methods, it reveals a significant discrepancy between the operational time scales of experiments (static to GHz frequencies) and theoretical models (femtoseconds). Utilizing a recently developed time-linear nonequilibrium Green function formalism, we model molecular junctions on experimentally accessible time scales. Our study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. By calculating both electric and photonic current responses to an ac bias voltage, we observe pronounced electroluminescence and high harmonic generation in this setup. The mechanism of the latter effect is more analogous to that from solids than from isolated molecules, with even harmonics being suppressed or enhanced depending on the symmetry of the driving field.
Collapse
Affiliation(s)
- Riku Tuovinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
| | - Yaroslav Pavlyukh
- Institute of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Amirtharaj S, Xie Z, Si Yu See J, Rolleri G, Malchow K, Chen W, Bouhelier A, Lörtscher E, Galland C. Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions. ACS PHOTONICS 2024; 11:2388-2396. [PMID: 38911841 PMCID: PMC11191743 DOI: 10.1021/acsphotonics.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature. Despite the presence of hundreds of molecules in the junction, the electrical conductance and light emission are both highly sensitive to atomic-scale fluctuations-a phenomenology reminiscent of picocavities observed in Raman scattering and of luminescence blinking from photoexcited plasmonic junctions. Discrete steps in conductance associated with fluctuating emission intensities through the multiple plasmonic modes of the junction are consistent with a finite number of randomly localized, point-like sources dominating the optoelectronic response. Contrasting with these microscopic fluctuations, the overall plasmonic and electronic functionalities of our devices feature long-term survival at room temperature and under an electrical bias of a few volts, allowing for measurements over several months.
Collapse
Affiliation(s)
- Sakthi
Priya Amirtharaj
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhiyuan Xie
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Josephine Si Yu See
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Rolleri
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Konstantin Malchow
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wen Chen
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexandre Bouhelier
- Laboratoire
Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne, 21000 Dijon, France
| | - Emanuel Lörtscher
- IBM
Research Europe—Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Christophe Galland
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Zhu Y, Raschke MB, Natelson D, Cui L. Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2281-2322. [PMID: 39633666 PMCID: PMC11501151 DOI: 10.1515/nanoph-2023-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 12/07/2024]
Abstract
Plasmonic modes confined to metallic nanostructures at the atomic and molecular scale push the boundaries of light-matter interactions. Within these extreme plasmonic structures of ultrathin nanogaps, coupled nanoparticles, and tunnelling junctions, new physical phenomena arise when plasmon resonances couple to electronic, exitonic, or vibrational excitations, as well as the efficient generation of non-radiative hot carriers. This review surveys the latest experimental and theoretical advances in the regime of extreme nano-plasmonics, with an emphasis on plasmon-induced hot carriers, strong coupling effects, and electrically driven processes at the molecular scale. We will also highlight related nanophotonic and optoelectronic applications including plasmon-enhanced molecular light sources, photocatalysis, photodetection, and strong coupling with low dimensional materials.
Collapse
Affiliation(s)
- Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Markus B. Raschke
- Department of Physics, and JILA, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas Natelson
- Department of Physics and Astronomy, Electrical and Computer Engineering, Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Longji Cui
- Department of Mechanical Engineering, Materials Science and Engineering Program, & Center for Experiments on Quantum Materials (CEQM), University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Luo Y, Kong FF, Tian XJ, Yu YJ, Jing SH, Zhang C, Chen G, Zhang Y, Zhang Y, Li XG, Zhang ZY, Dong ZC. Anomalously bright single-molecule upconversion electroluminescence. Nat Commun 2024; 15:1677. [PMID: 38395971 PMCID: PMC10891098 DOI: 10.1038/s41467-024-45450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient upconversion electroluminescence is highly desirable for a broad range of optoelectronic applications, yet to date, it has been reported only for ensemble systems, while the upconversion electroluminescence efficiency remains very low for single-molecule emitters. Here we report on the observation of anomalously bright single-molecule upconversion electroluminescence, with emission efficiencies improved by more than one order of magnitude over previous studies, and even stronger than normal-bias electroluminescence. Intuitively, the improvement is achieved via engineering the energy-level alignments at the molecule-substrate interface so as to activate an efficient spin-triplet mediated upconversion electroluminescence mechanism that only involves pure carrier injection steps. We further validate the intuitive picture with the construction of delicate electroluminescence diagrams for the excitation of single-molecule electroluminescence, allowing to readily identify the prerequisite conditions for producing efficient upconversion electroluminescence. These findings provide deep insights into the microscopic mechanism of single-molecule upconversion electroluminescence and organic electroluminescence in general.
Collapse
Affiliation(s)
- Yang Luo
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fan-Fang Kong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Jun Tian
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yun-Jie Yu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shi-Hao Jing
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gong Chen
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Yao Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Xiao-Guang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Zhen-Yu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Zhen-Chao Dong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| |
Collapse
|
7
|
Paoletta AL, Venkataraman L. Determining Transmission Characteristics from Shot-Noise-Driven Electroluminescence in Single-Molecule Junctions. NANO LETTERS 2024; 24:1931-1935. [PMID: 38315038 DOI: 10.1021/acs.nanolett.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Biased metal-molecule-metal junctions emit light through electroluminescence, a phenomenon at the intersection of molecular electronics and nanoplasmonics. This can occur when the junction plasmon mode is excited by inelastic electron current fluctuations. Here, we simultaneously measure the conductance and electroluminescence intensity from single-molecule junctions with time resolution in a solution environment at room temperature. We use current versus bias data to determine the molecular junction transport parameters and then relate these to the expected current shot noise. We find that the electroluminescence signal accurately matches the theoretical prediction of shot-noise-driven emission in a large fraction of the molecular junctions studied. This introduces a novel experimental method for qualitatively estimating finite-frequency shot noise in single-molecule junctions under ambient conditions. We further demonstrate that electroluminescence can be used to obtain the level alignment of the frontier orbital dominating transport in the molecular junction.
Collapse
Affiliation(s)
- Angela L Paoletta
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Jeon ES, Ko Y, Yoo S. Design principles for electrically driven Luttinger liquid-fed plasmonic nanoantennas. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2507-2516. [PMID: 39633741 PMCID: PMC11501488 DOI: 10.1515/nanoph-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 12/07/2024]
Abstract
Electrons injected into one-dimensional (1D) metals are efficiently converted into infrared plasmons because the unique property of the Luttinger liquid, a strongly correlated electronic matter in one-dimensional (1D) metals, prohibits excitations of other quasiparticles. Using the Luttinger liquid behavior, the electrically driven 1D metals can be used as a feed for optical nanoantennas. Nanoantennas can couple the 1D Luttinger liquid plasmons in the feed to the radiating photons in free space. In this work, we suggest design principles for the 1D metallic Luttinger liquid feed and the nanoantennas to obtain high injection and radiation efficiencies, respectively. We expect that our work can promote experimental efforts to realize electrically driven Luttinger liquid-fed nanoantennas and efficient infrared light sources.
Collapse
Affiliation(s)
- Eun Su Jeon
- Department of Physics, Inha University, Incheon, Republic of Korea
| | - YoonYeong Ko
- Department of Physics, Inha University, Incheon, Republic of Korea
| | - SeokJae Yoo
- Department of Physics, Inha University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Zhu Y, Cui L, Abbasi M, Natelson D. Tuning Light Emission Crossovers in Atomic-Scale Aluminum Plasmonic Tunnel Junctions. NANO LETTERS 2022; 22:8068-8075. [PMID: 36197739 DOI: 10.1021/acs.nanolett.2c02013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Atomic-sized plasmonic tunnel junctions are of fundamental interest, with great promise as the smallest on-chip light sources in various optoelectronic applications. Several mechanisms of light emission in electrically driven plasmonic tunnel junctions have been proposed, from single-electron or higher-order multielectron inelastic tunneling to recombination from a steady-state population of hot carriers. By progressively altering the tunneling conductance of an aluminum junction, we tune the dominant light emission mechanism through these possibilities for the first time, finding quantitative agreement with theory in each regime. Improved plasmonic resonances in the energy range of interest increase photon yields by 2 orders of magnitude. These results demonstrate that the dominant emission mechanism is set by a combination of tunneling rate, hot carrier relaxation time scales, and junction plasmonic properties.
Collapse
Affiliation(s)
- Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, Texas77005, United States
| | - Longji Cui
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado80309, United States
| | - Mahdiyeh Abbasi
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas77005, United States
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice University, Houston, Texas77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas77005, United States
| |
Collapse
|
10
|
Rosławska A, Merino P, Grewal A, Leon CC, Kuhnke K, Kern K. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity. NANO LETTERS 2021; 21:7221-7227. [PMID: 34428071 PMCID: PMC8887667 DOI: 10.1021/acs.nanolett.1c02207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optical spectromicroscopies, which can reach atomic resolution due to plasmonic enhancement, are perturbed by spontaneous intensity modifications. Here, we study such fluctuations in plasmonic electroluminescence at the single-atom limit profiting from the precision of a low-temperature scanning tunneling microscope. First, we investigate the influence of a controlled single-atom transfer from the tip to the sample on the plasmonic properties of the junction. Next, we form a well-defined atomic contact of several quanta of conductance. In contact, we observe changes of the electroluminescence intensity that can be assigned to spontaneous modifications of electronic conductance, plasmonic excitation, and optical antenna properties all originating from minute atomic rearrangements at or near the contact. Our observations are relevant for the understanding of processes leading to spontaneous intensity variations in plasmon-enhanced atomic-scale spectroscopies such as intensity blinking in picocavities.
Collapse
Affiliation(s)
- Anna Rosławska
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Pablo Merino
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Instituto
de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
- Instituto
de Física Fundamental, CSIC, E-28006 Madrid, Spain
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
| | | | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Ahmadivand A. Electrically Excited Plasmonic Ultraviolet Light Sources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100819. [PMID: 33938142 DOI: 10.1002/smll.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The emission of photons from metal-insulator-metal (MIM) nanojunctions through inelastic tunneling of electrically driven electrons is a well-acknowledged approach to develop miniaturized light sources and ultradense photonic instruments. Generally, the existing research in the optimization of electromigrated tunneling junctions is principally centered on the generation of visible and near-infrared lights. This study reports on the near-ultraviolet (NUV, λ ≈ 355 nm) light emission from enhanced tunneling of electrons using aluminum nanoelectrodes. Compared to conventional noble metals, the high electron density and low screening of aluminum enable supporting of pronounced local fields at high energies (i.e, ultraviolet (UV)). As the color of light can be straightforwardly determined by the properties of tunneling structures, the exquisite features of aluminum have empowered the fashioning of tunneling devices that are able to effectively sustain plasmons at short wavelengths and emit UV light with high photon yield. This demonstration is a breakthrough in the generation of high-energy beams using electrically excited aluminum tunneling platforms, which promisingly accelerates the implementation of electrically tunable and ultradense UV light sources.
Collapse
Affiliation(s)
- Arash Ahmadivand
- Metamaterial Technologies Inc. (META), Pleasanton, CA, 94588, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| |
Collapse
|
12
|
Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling. Nat Commun 2021; 12:3111. [PMID: 34035272 PMCID: PMC8149681 DOI: 10.1038/s41467-021-23512-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
On-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability. However, the major barrier to the demonstrated IET-based SP sources is their low SP excitation efficiency due to the fact that elastic tunneling of electrons is much more efficient than inelastic tunneling. Here, we remove this barrier by introducing resonant inelastic electron tunneling (RIET)—follow a recent theoretical proposal—at the visible/near-infrared (NIR) frequencies and demonstrate highly-efficient electrically-driven SP sources. In our system, RIET is supported by a TiN/Al2O3 metallic quantum well (MQW) heterostructure, while monocrystalline silver nanorods (AgNRs) were used for the SP generation (localized surface plasmons (LSPs)). In principle, this RIET approach can push the external quantum efficiency (EQE) close to unity, opening up a new era of SP sources for not only high-performance plasmonic circuitry, but also advanced optical sensing applications. On-chip circuits based on plasmonic systems are a promising potential technology. Here the authors present efficient, on-chip, localized plasmonic excitation based on resonant inelastic electron tunneling with metallic quantum well junction.
Collapse
|
13
|
Maslova NS, Arseyev PI, Mantsevich VN. Tunneling current and noise of entangled electrons in correlated double quantum dot. Sci Rep 2021; 11:9336. [PMID: 33927283 PMCID: PMC8085215 DOI: 10.1038/s41598-021-88721-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
We developed general approach for the analysis of tunneling current and its zero frequency noise for a wide class of systems where electron transport occurs through the intermediate structure with localized electrons. Proposed approach opens the possibility to study electron transport through multi-electron correlated states and allows to reveal the influence of spatial and spin symmetry of the total system on the electron transport. This approach is based on Keldysh diagram technique in pseudo-particle representation taking into account the operator constraint on the number of pseudo-particles, which gives the possibility to exclude non-physical states. It was shown that spatial and spin symmetry of the total system can block some channels for electron transport through the correlated quantum dots. Moreover, it was demonstrated that the stationary tunneling current and zero frequency noise in correlated coupled quantum dots depend on initial state of the system. In the frame of the proposed approach it was also shown that for the parallel coupling of two correlated quantum dots to the reservoirs tunneling current and its zero frequency noise are suppressed if tunneling occurs through the entangled triplet state with zero total spin projection on the z axis or enhanced for the tunneling through the singlet state in comparison with electron transport through the uncorrelated localized single-electron state. Obtained results demonstrate that two-electron entangled states in correlated quantum dots give the possibility to tune the zero frequency noise amplitude by blocking some channels for electron transport that is very promising in the sense of two-electron entangled states application in quantum communication and logic devices. The obtained nonmonotonic behavior of Fano factor as a function of applied bias is the direct manifestation of the possibility to control the noise to signal ration in correlated quantum dots. We also provide detailed calculations of current and noise for both single type of carriers and two different types of carriers in the presence and in the absence of Coulomb interaction in Supplementary materials.
Collapse
Affiliation(s)
- N S Maslova
- Quantum Technology Center and Quantum electronics department, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - P I Arseyev
- P.N. Lebedev Physical Institute RAS, 119991, Moscow, Russia
| | - V N Mantsevich
- Quantum Technology Center and department of Semiconductor physics and Cryoelectronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Cui L, Zhu Y, Nordlander P, Di Ventra M, Natelson D. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. NANO LETTERS 2021; 21:2658-2665. [PMID: 33710898 DOI: 10.1021/acs.nanolett.1c00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Surface plasmon enhanced processes and hot-carrier dynamics in plasmonic nanostructures are of great fundamental interest to reveal light-matter interactions at the nanoscale. Using plasmonic tunnel junctions as a platform supporting both electrically and optically excited localized surface plasmons, we report a much greater (over 1000× ) plasmonic light emission at upconverted photon energies under combined electro-optical excitation, compared with electrical or optical excitation separately. Two mechanisms compatible with the form of the observed spectra are interactions of plasmon-induced hot carriers and electronic anti-Stokes Raman scattering. Our measurement results are in excellent agreement with a theoretical model combining electro-optical generation of hot carriers through nonradiative plasmon excitation and hot-carrier relaxation. We also discuss the challenge of distinguishing relative contributions of hot carrier emission and the anti-Stokes electronic Raman process. This observed increase in above-threshold emission in plasmonic systems may open avenues in on-chip nanophotonic switching and hot-carrier photocatalysis.
Collapse
Affiliation(s)
- Longji Cui
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Yunxuan Zhu
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Massimiliano Di Ventra
- Department of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Douglas Natelson
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Shalem G, Erez-Cohen O, Mahalu D, Bar-Joseph I. Light Emission in Metal-Semiconductor Tunnel Junctions: Direct Evidence for Electron Heating by Plasmon Decay. NANO LETTERS 2021; 21:1282-1287. [PMID: 33497237 PMCID: PMC7883388 DOI: 10.1021/acs.nanolett.0c03945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/14/2021] [Indexed: 05/26/2023]
Abstract
We study metal-insulator-semiconductor tunnel junctions where the metal electrode is a patterned gold layer, the insulator is a thin layer of Al2O3, and the semiconductor is p-type silicon. We observe light emission due to plasmon-assisted inelastic tunneling from the metal to the silicon valence band. The emission cutoff shifts to higher energies with increasing voltage, a clear signature of electrically driven plasmons. The cutoff energy exceeds the applied voltage, and a large fraction of the emission is above the threshold, ℏω > eV. We find that the emission spectrum manifests the Fermi-Dirac distribution of the electrons in the gold electrode. This distribution can be used to determine the effective electron temperature, Te, which is shown to have a linear dependence on the applied voltage. The strong correlation of Te with the plasmon energy serves as evidence that the mechanism for heating the electrons is plasmon decay at the source metal electrode.
Collapse
Affiliation(s)
- Guy Shalem
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Omer Erez-Cohen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Diana Mahalu
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Bar-Joseph
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Fung ED, Venkataraman L. Too Cool for Blackbody Radiation: Overbias Photon Emission in Ambient STM Due to Multielectron Processes. NANO LETTERS 2020; 20:8912-8918. [PMID: 33206534 DOI: 10.1021/acs.nanolett.0c03994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light emission from tunnel junctions are a potential photon source for nanophotonic applications. Surprisingly, the photons emitted can have energies exceeding the energy supplied to the electrons by the bias. Three mechanisms for generating these so-called overbias photons have been proposed, but the relationship between these mechanisms has not been clarified. In this work, we argue that multielectron processes provide the best framework for understanding overbias light emission in tunnel junctions. Experimentally, we demonstrate for the first time that the superlinear dependence of emission on conductance predicted by this theory is robust to the temperature of the tunnel junction, indicating that tunnel junctions are a promising candidate for electrically driven broadband photon sources.
Collapse
Affiliation(s)
- E-Dean Fung
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
17
|
Cui L, Zhu Y, Abbasi M, Ahmadivand A, Gerislioglu B, Nordlander P, Natelson D. Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. NANO LETTERS 2020; 20:6067-6075. [PMID: 32568541 DOI: 10.1021/acs.nanolett.0c02121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Above-threshold light emission from plasmonic tunnel junctions, when emitted photons have energies significantly higher than the energy scale of incident electrons, has attracted much recent interest in nano-optics, while the underlying physics remains elusive. We examine above-threshold light emission in electromigrated tunnel junctions. Our measurements over a large ensemble of devices demonstrate a giant (∼104) material-dependent photon yield (emitted photons per incident electrons). This dramatic effect cannot be explained only by the radiative field enhancement due to localized plasmons in the tunneling gap. Emission is well described by a Boltzmann spectrum with an effective temperature exceeding 2000 K, coupled to a plasmon-modified photonic density of states. The effective temperature is approximately linear in the applied bias, consistent with a suggested theoretical model describing hot-carrier dynamics driven by nonradiative decay of electrically excited localized plasmons. Electrically generated hot carriers and nontraditional light emission could open avenues for active photochemistry, optoelectronics, and quantum optics.
Collapse
Affiliation(s)
- Longji Cui
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Yunxuan Zhu
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Mahdiyeh Abbasi
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Arash Ahmadivand
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Burak Gerislioglu
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Douglas Natelson
- Department of Physics and Astronomy and Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Schaeverbeke Q, Avriller R, Frederiksen T, Pistolesi F. Single-Photon Emission Mediated by Single-Electron Tunneling in Plasmonic Nanojunctions. PHYSICAL REVIEW LETTERS 2019; 123:246601. [PMID: 31922843 DOI: 10.1103/physrevlett.123.246601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 05/24/2023]
Abstract
Recent scanning tunneling microscopy (STM) experiments reported single-molecule fluorescence induced by tunneling currents in the nanoplasmonic cavity formed by the STM tip and the substrate. The electric field of the cavity mode couples with the current-induced charge fluctuations of the molecule, allowing the excitation of photons. We investigate theoretically this system for the experimentally relevant limit of large damping rate κ for the cavity mode and arbitrary coupling strength to a single-electronic level. We find that for bias voltages close to the first inelastic threshold of photon emission, the emitted light displays antibunching behavior with vanishing second-order photon correlation function. At the same time, the current and the intensity of emitted light display Franck-Condon steps at multiples of the cavity frequency ω_{c} with a width controlled by κ rather than the temperature T. For large bias voltages, we predict strong photon bunching of the order of κ/Γ where Γ is the electronic tunneling rate. Our theory thus predicts that strong coupling to a single level allows current-driven nonclassical light emission.
Collapse
Affiliation(s)
- Q Schaeverbeke
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
| | - R Avriller
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - T Frederiksen
- Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - F Pistolesi
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| |
Collapse
|
20
|
Parzefall M, Novotny L. Optical antennas driven by quantum tunneling: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:112401. [PMID: 31491785 DOI: 10.1088/1361-6633/ab4239] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Analogous to radio- and microwave antennas, optical nanoantennas are devices that receive and emit radiation at optical frequencies. Until recently, the realization of electrically driven optical antennas was an outstanding challenge in nanophotonics. In this review we discuss and analyze recent reports in which quantum tunneling-specifically inelastic electron tunneling-is harnessed as a means to convert electrical energy into photons, mediated by optical antennas. To aid this analysis we introduce the fundamentals of optical antennas and inelastic electron tunneling. Our discussion is focused on recent progress in the field and on future directions and opportunities.
Collapse
|
21
|
Miwa K, Imada H, Imai-Imada M, Kimura K, Galperin M, Kim Y. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope. NANO LETTERS 2019; 19:2803-2811. [PMID: 30694065 DOI: 10.1021/acs.nanolett.8b04484] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electron transport and optical properties of a single molecule in contact with conductive materials have attracted considerable attention because of their scientific importance and potential applications. With the recent progress in experimental techniques, especially by virtue of scanning tunneling microscope (STM)-induced light emission, where the tunneling current of the STM is used as an atomic-scale source for induction of light emission from a single molecule, it has become possible to investigate single-molecule properties at subnanometer spatial resolution. Despite extensive experimental studies, the microscopic mechanism of electronic excitation of a single molecule in STM-induced light emission has yet to be clarified. Here we present a formulation of single-molecule electroluminescence driven by electron transfer between a molecule and metal electrodes based on a many-body state representation of the molecule. The effects of intramolecular Coulomb interaction on conductance and luminescence spectra are investigated using the nonequilibrium Hubbard Green's function technique combined with first-principles calculations. We compare simulation results with experimental data and find that the intramolecular Coulomb interaction is crucial for reproducing recent experiments for a single phthalocyanine molecule. The developed theory provides a unified description of the electron transport and optical properties of a single molecule in contact with metal electrodes driven out of equilibrium, and thereby, it contributes to a microscopic understanding of optoelectronic conversion in single molecules on solid surfaces and in nanometer-scale junctions.
Collapse
Affiliation(s)
- Kuniyuki Miwa
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Hiroshi Imada
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
| | - Miyabi Imai-Imada
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science , The University of Tokyo , Kashiwa , Chiba 277-8651 , Japan
| | - Kensuke Kimura
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science , The University of Tokyo , Kashiwa , Chiba 277-8651 , Japan
| | - Michael Galperin
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Yousoo Kim
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
22
|
Chen G, Luo Y, Gao H, Jiang J, Yu Y, Zhang L, Zhang Y, Li X, Zhang Z, Dong Z. Spin-Triplet-Mediated Up-Conversion and Crossover Behavior in Single-Molecule Electroluminescence. PHYSICAL REVIEW LETTERS 2019; 122:177401. [PMID: 31107062 DOI: 10.1103/physrevlett.122.177401] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Scanning-tunneling-microscope-induced light emission serves as a powerful approach in revealing and manipulating the optical properties of molecular species, intermolecular energy transfer, and plasmon-molecule coupling. Earlier studies have established the existence of molecular up-conversion electroluminescence in diverse situations, but the underlying microscopic mechanisms are still under active debate, dominated by intermolecular triplet-triplet annihilation and plasmonic pumping. Here we report on the experimental realization of up-conversion electroluminescence from a prototypical single phthalocyanine molecule, allowing us to unambiguously rule out mechanisms based on intermolecular coupling and also offering unprecedented opportunities to elucidate much richer characteristics unforeseen in previous studies. In particular, the bias-dependent emission intensity displays three distinct regions with different nonlinear current dependences, which can be attributed to crossover behavior caused by the interplay between inelastic electron scattering and carrier-injection processes. We also develop a microscopic description to capture the essential physics involved in up-conversion electroluminescence mediated by a proper intermediate spin-triplet state.
Collapse
Affiliation(s)
- Gong Chen
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Luo
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongying Gao
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunjie Yu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenchao Dong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Leon CC, Rosławska A, Grewal A, Gunnarsson O, Kuhnke K, Kern K. Photon superbunching from a generic tunnel junction. SCIENCE ADVANCES 2019; 5:eaav4986. [PMID: 31093525 PMCID: PMC6510551 DOI: 10.1126/sciadv.aav4986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/26/2019] [Indexed: 05/21/2023]
Abstract
Generating time-correlated photon pairs at the nanoscale is a prerequisite to creating highly integrated optoelectronic circuits that perform quantum computing tasks based on heralded single photons. Here, we demonstrate fulfilling this requirement with a generic tip-surface metal junction. When the junction is luminescing under DC bias, inelastic tunneling events of single electrons produce a stream of visible photons of plasmonic origin whose superbunching index is 17 (improved to a record of 70 by the authors during publication) when measured with a 53-ps instrumental resolution limit. The effect is driven electrically, rather than optically. This discovery has immediate and profound implications for quantum optics and cryptography, notwithstanding its fundamental importance to basic science and its ushering in of heralded photon experiments on the nanometer scale.
Collapse
Affiliation(s)
- Christopher C. Leon
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
- Corresponding author. (C.C.L.); (K.Ku.)
| | - Anna Rosławska
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
| | - Abhishek Grewal
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
| | - Olle Gunnarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
| | - Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
- Corresponding author. (C.C.L.); (K.Ku.)
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, DE-70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Lu Y, Chen Y, Xu J, Wang T, Lü JT. Decay channels of gap plasmons in STM tunnel junctions. OPTICS EXPRESS 2018; 26:30444-30455. [PMID: 30469918 DOI: 10.1364/oe.26.030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
We study the decay of gap plasmons localized between a scanning tunneling microscope tip and metal substrate, excited by inelastic tunneling electrons. The overall excited energy from the tunneling electrons is divided into two categories in the form of resistive dissipation and electromagnetic radiation, which together can further be separated into four diffierent channels, including SPP channel on the tip, SPP channel on the substrate, air mode channel and direct quenching channel. In this work, we study the enhancement factor, i.e. Purcell factor, of the STM tunnel junctions, which are mediated by the nearby metallic structures. We find that the gap plasmon mode is most likely to couple to the SPP channel on the tip, rather than the SPP channel on the substrate or the air mode. The direct quenching in the apex of tip also takes a considerable portion especially in high frequency region, the enhancement factor of direct quenching in the tip is much higher than the direct quenching in the substrate. We adopt four tips with diffierent apex radii, i.e., 1 nm, 5 nm, 10 nm, 20 nm. When the apex size is small, the frequency dependent enhancement factor from the SPPs contribution has a pronounced peak at 1.55 eV, however, as the radius increases, the peak of enhancement factor in the high frequency region appears, the 1.55 eV peak becomes less dominated. This phenomenon can be attributed to the change of tip shape, in the form of mode coupling. Our results also show a relationship between the direct quenching in the substrate and in the tip. With the larger radius of apex, the ratio of these two part of energy approaches 1, which indicate that the energy distribution of direct quenching is sensitive to the shape of the tip-substrate gap.
Collapse
|
25
|
|
26
|
Crépieux A, Sahoo S, Duong TQ, Zamoum R, Lavagna M. Emission Noise in an Interacting Quantum Dot: Role of Inelastic Scattering and Asymmetric Coupling to the Reservoirs. PHYSICAL REVIEW LETTERS 2018; 120:107702. [PMID: 29570316 DOI: 10.1103/physrevlett.120.107702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 06/08/2023]
Abstract
A theory is developed for the emission noise at frequency ν in a quantum dot in the presence of Coulomb interactions and asymmetric couplings to the reservoirs. We give an analytical expression for the noise in terms of the various transmission amplitudes. Including the inelastic scattering contribution, it can be seen as the analog of the Meir-Wingreen formula for the current. A physical interpretation is given on the basis of the transmission of one electron-hole pair to the concerned reservoir where it emits an energy after recombination. We then treat the interactions by solving the self-consistent equations of motion for the Green functions. The results for the noise derivative versus eV show a zero value until eV=hν, followed by a Kondo peak in the Kondo regime, in good agreement with recent measurements in carbon nanotube quantum dots.
Collapse
Affiliation(s)
- A Crépieux
- Aix Marseille Univ, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille, France
| | - S Sahoo
- Univ. Grenoble Alpes, CEA, INAC-Pheliqs, 38000 Grenoble, France
- Physics Department and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - T Q Duong
- Aix Marseille Univ, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille, France
| | - R Zamoum
- Faculté des sciences et des sciences appliquées, Université de Bouira, rue Drissi Yahia, Bouira 10000, Algeria
| | - M Lavagna
- Univ. Grenoble Alpes, CEA, INAC-Pheliqs, 38000 Grenoble, France
- Centre National de la Recherche Scientifique-CNRS, 38042 Grenoble, France
| |
Collapse
|
27
|
Signatures of Plexitonic States in Molecular Electroluminescence. Sci Rep 2018; 8:2314. [PMID: 29396443 PMCID: PMC5797164 DOI: 10.1038/s41598-018-19382-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
We develop a quantum master equation (QME) approach to investigate the electroluminesence (EL) of molecules confined between metallic electrodes and coupled to quantum plasmonic modes. Within our general state-based framework, we describe electronic tunneling, vibrational damping, environmental dephasing, and the quantum coherent dynamics of coupled quantum electromagnetic field modes. As an example, we calculate the STM-induced spontaneous emission of a tetraphenylporphyrin (TPP) molecule coupled to a nanocavity plasmon. In the weak molecular exciton-plasmon coupling regime we find excellent agreement with experiments, including above-threshold hot luminescence, an effect not described by previous semiclassical calculations. In the strong coupling regime, we analyze the spectral features indicative of the formation of plexcitonic states.
Collapse
|
28
|
Ekici E, Kapitza P, Bobisch CA, Möller R. Electron-induced photon emission above the quantum cutoff due to time-energy uncertainty. OPTICS LETTERS 2017; 42:4585-4588. [PMID: 29140318 DOI: 10.1364/ol.42.004585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
The light emission from a tunneling junction induced by tunneling electrons has been studied around the cutoff at hν=eVt. The emitted photons are found to exceed the excitation energy provided by the energy of the tunneling electrons. The experiments have been performed by a low- temperature scanning tunneling microscope at 80 K for an Ag(111) surface and an Ag-covered PtIr tip. A detailed analysis of the emission spectra reveals that the findings cannot be explained by the thermal broadening of the electron Fermi distribution alone. However, a correct description is found if a finite lifetime of the excited states in the range of 30-80 fs is included.
Collapse
|
29
|
Towards Noise Simulation in Interacting Nonequilibrium Systems Strongly Coupled to Baths. Sci Rep 2017; 7:9735. [PMID: 28851909 PMCID: PMC5574948 DOI: 10.1038/s41598-017-09060-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Progress in experimental techniques at nanoscale makes measurements of noise in molecular junctions possible. These data are important source of information not accessible through average flux measurements. The emergence of optoelectronics, the recently shown possibility of strong light-matter couplings, and developments in the field of quantum thermodynamics are making measurements of transport statistics even more important. Theoretical methods for noise evaluation in first principles simulations can be roughly divided into approaches for weak intra-system interactions, and those treating strong interactions for systems weakly coupled to baths. We argue that due to structure of its diagrammatic expansion, and the use of many-body states as a basis of its formulation, the recently introduced nonequilibrium diagrammatic technique for Hubbard Green functions is a relatively inexpensive method suitable for evaluation of noise characteristics in first principles simulations over a wide range of parameters. We illustrate viability of the approach by simulations of noise and noise spectrum within generic models for non-, weakly and strongly interacting systems. Results of the simulations are compared to exact data (where available) and to simulations performed within approaches best suited for each of the three parameter regimes.
Collapse
|
30
|
Peters PJ, Xu F, Kaasbjerg K, Rastelli G, Belzig W, Berndt R. Quantum Coherent Multielectron Processes in an Atomic Scale Contact. PHYSICAL REVIEW LETTERS 2017; 119:066803. [PMID: 28949609 DOI: 10.1103/physrevlett.119.066803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 05/13/2023]
Abstract
The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hν>2eV. A model of electrons interacting coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at eV and 2eV as well as the scaling of the intensity at low and intermediate conductances.
Collapse
Affiliation(s)
- Peter-Jan Peters
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Fei Xu
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Kristen Kaasbjerg
- Center for Nanostructured Graphene, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Wolfgang Belzig
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
31
|
Jiang J, Abi Mansour A, Ortoleva PJ. Multiscale time-dependent density functional theory: Demonstration for plasmons. J Chem Phys 2017; 147:054102. [DOI: 10.1063/1.4994896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiajian Jiang
- Department of Chemistry and Center for Theoretical and Computational Nanoscience, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew Abi Mansour
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, USA
| | - Peter J. Ortoleva
- Department of Chemistry and Center for Theoretical and Computational Nanoscience, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
32
|
Kalathingal V, Dawson P, Mitra J. Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission. Sci Rep 2017; 7:3530. [PMID: 28615660 PMCID: PMC5471255 DOI: 10.1038/s41598-017-03766-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 11/09/2022] Open
Abstract
The spectral distribution of light emitted from a scanning tunnelling microscope junction not only bears its intrinsic plasmonic signature but is also imprinted with the characteristics of optical frequency fluc- tuations of the tunnel current. Experimental spectra from gold-gold tunnel junctions are presented that show a strong bias (V b ) dependence, curiously with emission at energies higher than the quantum cut-off (eV b ); a component that decays monotonically with increasing bias. The spectral evolution is explained by developing a theoretical model for the power spectral density of tunnel current fluctuations, incorporating finite temperature contribution through consideration of the quantum transport in the system. Notably, the observed decay of the over cut-off emission is found to be critically associated with, and well explained in terms of the variation in junction conductance with V b . The investigation highlights the scope of plasmon-mediated light emission as a unique probe of high frequency fluctuations in electronic systems that are fundamental to the electrical generation and control of plasmons.
Collapse
Affiliation(s)
- Vijith Kalathingal
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India.
| | - Paul Dawson
- Centre for Nanostructured Media, Queen's University, Belfast, BT7 1NN, United Kingdom
| | - J Mitra
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India.
| |
Collapse
|
33
|
Kuhnke K, Große C, Merino P, Kern K. Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chem Rev 2017; 117:5174-5222. [DOI: 10.1021/acs.chemrev.6b00645] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Christoph Große
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Pablo Merino
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
34
|
Galperin M. Photonics and spectroscopy in nanojunctions: a theoretical insight. Chem Soc Rev 2017; 46:4000-4019. [DOI: 10.1039/c7cs00067g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green function methods for photonics and spectroscopy in nanojunctions.
Collapse
Affiliation(s)
- Michael Galperin
- Department of Chemistry & Biochemistry
- University of California San Diego
- La Jolla
- USA
| |
Collapse
|
35
|
Gao Y, Galperin M. Optical spectroscopy of molecular junctions: Nonequilibrium Green’s functions perspective. J Chem Phys 2016; 144:174113. [DOI: 10.1063/1.4948469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yi Gao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
36
|
Cazier N, Buret M, Uskov AV, Markey L, Arocas J, Colas Des Francs G, Bouhelier A. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna. OPTICS EXPRESS 2016; 24:3873-3884. [PMID: 26907040 DOI: 10.1364/oe.24.003873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically-activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics.
Collapse
|
37
|
Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I. Fano Resonance in an Electrically Driven Plasmonic Device. NANO LETTERS 2016; 16:748-752. [PMID: 26717292 DOI: 10.1021/acs.nanolett.5b04622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an electrically driven plasmonic device consisting of a gold nanoparticle trapped in a gap between two electrodes. The tunneling current in the device generates plasmons, which decay radiatively. The emitted spectrum extends up to an energy that depends on the applied voltage. Characterization of the electrical conductance at low temperatures allows us to extract the voltage drop on each tunnel barrier and the corresponding emitted spectrum. In several devices we find a pronounced sharp asymmetrical dip in the spectrum, which we identify as a Fano resonance. Finite-difference time-domain calculations reveal that this resonance is due to interference between the nanoparticle and electrodes dipolar fields and can be conveniently controlled by the structural parameters.
Collapse
Affiliation(s)
- Yuval Vardi
- Department of Condensed Matter Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Eyal Cohen-Hoshen
- Department of Condensed Matter Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Guy Shalem
- Department of Condensed Matter Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Israel Bar-Joseph
- Department of Condensed Matter Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
38
|
Marinica DC, Zapata M, Nordlander P, Kazansky AK, M. Echenique P, Aizpurua J, Borisov AG. Active quantum plasmonics. SCIENCE ADVANCES 2015; 1:e1501095. [PMID: 26824066 PMCID: PMC4730853 DOI: 10.1126/sciadv.1501095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/23/2015] [Indexed: 05/22/2023]
Abstract
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.
Collapse
Affiliation(s)
- Dana Codruta Marinica
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France
| | - Mario Zapata
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France
- Materials Physics Center, Consejo Superior de Investigaciones Científicas–Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia–San Sebastián, Spain
- Departamento de Física, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Peter Nordlander
- MS61, Laboratory for Nanophotonics, Department of Physics, Rice University, Houston, TX 77005, USA
| | - Andrey K. Kazansky
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia–San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Pedro M. Echenique
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia–San Sebastián, Spain
| | - Javier Aizpurua
- Materials Physics Center, Consejo Superior de Investigaciones Científicas–Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia–San Sebastián, Spain
- Corresponding author. E-mail: (J.A.); (A.G.B.)
| | - Andrei G. Borisov
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France
- Corresponding author. E-mail: (J.A.); (A.G.B.)
| |
Collapse
|