1
|
Lu J, Wang R, Wang C, Jiang JH. Thermoelectric Rectification and Amplification in Interacting Quantum-Dot Circuit-Quantum-Electrodynamics Systems. ENTROPY (BASEL, SWITZERLAND) 2023; 25:498. [PMID: 36981386 PMCID: PMC10047699 DOI: 10.3390/e25030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Thermoelectric rectification and amplification were investigated in an interacting quantum-dot circuit-quantum-electrodynamics system. By applying the Keldysh nonequilibrium Green's function approach, we studied the elastic (energy-conserving) and inelastic (energy-nonconserving) transport through a cavity-coupled quantum dot under the voltage biases in a wide spectrum of electron-electron and electron-photon interactions. While significant charge and Peltier rectification effects were found for strong light-matter interactions, the dependence on electron-electron interaction could be nonmonotonic and dramatic. Electron-electron interaction-enhanced transport was found under certain resonance conditions. These nontrivial interaction effects were found in both linear and nonlinear transport regimes, which manifested in charge and thermal currents, rectification effects, and the linear thermal transistor effect.
Collapse
Affiliation(s)
- Jincheng Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rongqian Wang
- Institute of Theoretical and Applied Physics, School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Chen Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Hua Jiang
- Institute of Theoretical and Applied Physics, School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Wang R, Liao H, Song CY, Tang GH, Yang NX. Linear and nonlinear thermoelectric transport in a quantum spin Hall insulators coupled with a nanomagnet. Sci Rep 2022; 12:12048. [PMID: 35835824 PMCID: PMC9283440 DOI: 10.1038/s41598-022-16043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Thermoelectric effects in quantum systems have been focused in recent years. Thermoelectric energy conversion study of systems with edge states, such as quantum Hall insulators and quantum spin Hall insulators, is one of the most important frontier topics in material science and condensed-matter physics. Based on the previous paper (Gresta in Phys Rev Lett 123:186801, 2019), we further investigated the linear and nonlinear thermoelectric transport properties of helical edge states of the quantum spin Hall insulators coupled with double nanomagnet, calculated the Seebeck coefficients [Formula: see text] and the thermoelectrical figure of merit ZT, discussed the influence of the length of the nanomagnet and the relative tilt angle of component of the magnetization perpendicular on the thermoelectric coefficients ([Formula: see text] and ZT), and summarized some meaningful conclusions in the linear response regime. In the nonlinear regime, we calculated the equivalent figure of merit [Formula: see text] and the power-generation efficiency [Formula: see text] in different length of the nanomagnet, obtain the temperature difference of achieving optimal thermoelectricity. The results of this paper further confirm that the setup can indeed be used as a device for achieving high performance thermoelectric.
Collapse
Affiliation(s)
- Rui Wang
- Department of Physics, College of Sciences, Shihezi University, Shihezi, 832000, China.
| | - Hui Liao
- Department of Physics, College of Sciences, Shihezi University, Shihezi, 832000, China
| | - Chun-Yan Song
- Department of Physics, College of Sciences, Shihezi University, Shihezi, 832000, China
| | - Guang-Hui Tang
- Department of Physics, College of Sciences, Shihezi University, Shihezi, 832000, China
| | - Ning-Xuan Yang
- Department of Physics, College of Sciences, Shihezi University, Shihezi, 832000, China
| |
Collapse
|
3
|
Miura K, Izumida Y, Okuda K. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference. Phys Rev E 2022; 105:034102. [PMID: 35428092 DOI: 10.1103/physreve.105.034102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Achieving the Carnot efficiency at finite power is a challenging problem in heat engines due to the trade-off relation between efficiency and power that holds for general heat engines. It is pointed out that the Carnot efficiency at finite power may be achievable in the vanishing limit of the relaxation times of a system without breaking the trade-off relation. However, any explicit model of heat engines that realizes this scenario for arbitrary temperature difference has not been proposed. Here, we investigate an underdamped Brownian Carnot cycle where the finite-time adiabatic processes connecting the isothermal processes are tactically adopted. We show that in the vanishing limit of the relaxation times in the above cycle, the compatibility of the Carnot efficiency and finite power is achievable for arbitrary temperature difference. This is theoretically explained based on the trade-off relation derived for our cycle, which is also confirmed by numerical simulations.
Collapse
Affiliation(s)
- Kosuke Miura
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Izumida
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Koji Okuda
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Miura K, Izumida Y, Okuda K. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime. Phys Rev E 2021; 103:042125. [PMID: 34006002 DOI: 10.1103/physreve.103.042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
We study the possibility of achieving the Carnot efficiency in a finite-power underdamped Brownian Carnot cycle. Recently, it was reported that the Carnot efficiency is achievable in a general class of finite-power Carnot cycles in the vanishing limit of the relaxation times. Thus, it may be interesting to clarify how the efficiency and power depend on the relaxation times by using a specific model. By evaluating the heat-leakage effect intrinsic in the underdamped dynamics with the instantaneous adiabatic processes, we demonstrate that the compatibility of the Carnot efficiency and finite power is achieved in the vanishing limit of the relaxation times in the small temperature-difference regime. Furthermore, we show that this result is consistent with a trade-off relation between power and efficiency by explicitly deriving the relation of our cycle in terms of the relaxation times.
Collapse
Affiliation(s)
- Kosuke Miura
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Izumida
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Koji Okuda
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Large positive magnetoresistance and Dzyaloshinskii-Moriya interaction in CrSi driven by Cr 3d localization. Sci Rep 2020; 10:12030. [PMID: 32694707 PMCID: PMC7374744 DOI: 10.1038/s41598-020-67617-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
Spin chiral systems with Dzyaloshinskii–Moriya (DM) interaction due to broken inversion symmetry are extensively studied for their technological applications in spintronics and thermoelectrics. Here, we report an experimental study on the magnetization, magnetoresistance (MR) and electronic structure of a non-centrosymmetric compound CrSi with B20 crystal structure. Both magnetization and MR shows competing ferromagnetic (FM) and antiferromagnetic (AFM) correlations with the FM correlations being comparatively weaker indicating the presence of DM interaction in CrSi. A large positive MR\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim \,25\%$$\end{document}∼25% obtained at 5 K and 5 T magnetic field arises due to the stronger AFM correlations. Resonant photoemission shows both localized and itinerant nature of Cr 3d electrons to be present in CrSi and this is supported by the temperature dependence of magnetic susceptibility. Drastic variation in the density of states along with valence band broadening at low temperature indicates the increase in hybridization between Cr 3d and Si 3s–3p states which enhances the localization effects. Spin polarized itinerant Cr 3d electrons give rise to AFM spin density wave in CrSi. Magnetic interaction between the localized and itinerant Cr 3d electrons are found to be crucial for realizing DM interaction in this system. Spectral density of states derived from high resolution valence band measurements provides evidence of electronic topological transition in CrSi. Large density of polarized itinerant electrons which varies with temperature and the large positive MR with AFM correlations suggests CrSi as a potential candidate for both the thermoelectric and spintronics applications.
Collapse
|
6
|
Blasi G, Taddei F, Arrachea L, Carrega M, Braggio A. Nonlocal Thermoelectricity in a Superconductor-Topological-Insulator-Superconductor Junction in Contact with a Normal-Metal Probe: Evidence for Helical Edge States. PHYSICAL REVIEW LETTERS 2020; 124:227701. [PMID: 32567914 DOI: 10.1103/physrevlett.124.227701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/05/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
We consider a Josephson junction hosting a Kramers pair of helical edge states of a quantum spin Hall bar in contact with a normal-metal probe. In this hybrid system, the orbital phase, induced by a small magnetic field threading the junction known as a Doppler shift, combines with the conventional Josephson phase difference and originates an effect akin to a Zeeman field in the spectrum. As a consequence, when a temperature bias is applied to the superconducting terminals, a thermoelectric current is established in the normal probe. We argue that this purely nonlocal thermoelectric effect is a unique signature of the helical nature of the edge states coupled to superconducting leads and it can constitute a useful tool for probing the helical nature of the edge states in systems where the Hall bar configuration is difficult to achieve. We fully characterize thermoelectric response and performance of this hybrid junction in a wide range of parameters, demonstrating that the external magnetic flux inducing the Doppler shift can be used as a knob to control the thermoelectric response and the heat flow in a novel device based on topological junctions.
Collapse
Affiliation(s)
- Gianmichele Blasi
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Fabio Taddei
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Liliana Arrachea
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| | - Matteo Carrega
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Alessandro Braggio
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| |
Collapse
|
7
|
Sánchez R, Splettstoesser J, Whitney RS. Nonequilibrium System as a Demon. PHYSICAL REVIEW LETTERS 2019; 123:216801. [PMID: 31809128 DOI: 10.1103/physrevlett.123.216801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/10/2023]
Abstract
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demon's intricate action consists of measuring individual particles and subsequently performing feedback. We show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a nonequilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
Collapse
Affiliation(s)
- Rafael Sánchez
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Janine Splettstoesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Robert S Whitney
- Laboratoire de Physique et Modélisation des Milieux Condensés, Université Grenoble Alpes and CNRS, BP 166, 38042 Grenoble, France
| |
Collapse
|
8
|
Gresta D, Real M, Arrachea L. Optimal Thermoelectricity with Quantum Spin Hall Edge States. PHYSICAL REVIEW LETTERS 2019; 123:186801. [PMID: 31763901 DOI: 10.1103/physrevlett.123.186801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Indexed: 06/10/2023]
Abstract
We study the thermoelectric properties of a Kramers pair of helical edge states of the quantum spin Hall effect coupled to a nanomagnet with a component of the magnetization perpendicular to the direction of the spin-orbit interaction of the host. We show that the transmission function of this structure has the desired qualities for optimal thermoelectric performance in the quantum coherent regime. For a single magnetic domain, there is a power generation close to the optimal bound. In a configuration with two magnetic domains with different orientations, pronounced peaks in the transmission functions and resonances lead to a high figure of merit. We provide estimates for the fabrication of this device with HgTe quantum-well topological insulators.
Collapse
Affiliation(s)
- Daniel Gresta
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| | - Mariano Real
- Instituto Nacional de Tecnologia Industrial, INTI, Avenida General Paz 5445, 1650 Buenos Aires, Argentina
| | - Liliana Arrachea
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
9
|
Jaliel G, Puddy RK, Sánchez R, Jordan AN, Sothmann B, Farrer I, Griffiths JP, Ritchie DA, Smith CG. Experimental Realization of a Quantum Dot Energy Harvester. PHYSICAL REVIEW LETTERS 2019; 123:117701. [PMID: 31573223 DOI: 10.1103/physrevlett.123.117701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate experimentally an autonomous nanoscale energy harvester that utilizes the physics of resonant tunneling quantum dots. Gate-defined quantum dots on GaAs/AlGaAs high-electron-mobility transistors are placed on either side of a hot-electron reservoir. The discrete energy levels of the quantum dots are tuned to be aligned with low energy electrons on one side and high energy electrons on the other side of the hot reservoir. The quantum dots thus act as energy filters and allow for the conversion of heat from the cavity into electrical power. Our energy harvester, measured at an estimated base temperature of 75 mK in a He^{3}/He^{4} dilution refrigerator, can generate a thermal power of 0.13 fW for a temperature difference across each dot of about 67 mK.
Collapse
Affiliation(s)
- G Jaliel
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - R K Puddy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - R Sánchez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - A N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - B Sothmann
- Theoretische Physik, Universität Duisburg-Essen and CENIDE, D-47048 Duisburg, Germany
| | - I Farrer
- Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - J P Griffiths
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - D A Ritchie
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - C G Smith
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Ronetti F, Acciai M, Ferraro D, Rech J, Jonckheere T, Martin T, Sassetti M. Symmetry Properties of Mixed and Heat Photo-Assisted Noise in the Quantum Hall Regime. ENTROPY 2019; 21:e21080730. [PMID: 33267444 PMCID: PMC7515259 DOI: 10.3390/e21080730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022]
Abstract
We investigate the photo-assisted charge-heat mixed noise and the heat noise generated by periodic drives in Quantum Hall states belonging to the Laughlin sequence. Fluctuations of the charge and heat currents are due to weak backscattering induced in a quantum point contact geometry and are evaluated at the lowest order in the tunneling amplitude. Focusing on the cases of a cosine and Lorentzian periodic drive, we show that the different symmetries of the photo-assisted tunneling amplitudes strongly affect the overall profile of these quantities as a function of the AC and DC voltage contributions, which can be tuned independently in experiments.
Collapse
Affiliation(s)
- Flavio Ronetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - Matteo Acciai
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
| | - Dario Ferraro
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
- Correspondence:
| | - Jérôme Rech
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | | | - Thierry Martin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - Maura Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
11
|
Macieszczak K, Brandner K, Garrahan JP. Unified Thermodynamic Uncertainty Relations in Linear Response. PHYSICAL REVIEW LETTERS 2018; 121:130601. [PMID: 30312036 DOI: 10.1103/physrevlett.121.130601] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Thermodynamic uncertainty relations (TURs) are recently established relations between the relative uncertainty of time-integrated currents and entropy production in nonequilibrium systems. For small perturbations away from equilibrium, linear response (LR) theory provides the natural framework to study generic nonequilibrium processes. Here, we use LR to derive TURs in a straightforward and unified way. Our approach allows us to generalize TURs to systems without local time-reversal symmetry, including, e.g., ballistic transport and periodically driven classical and quantum systems. We find that, for broken time reversal, the bounds on the relative uncertainty are controlled both by dissipation and by a parameter encoding the asymmetry of the Onsager matrix. We illustrate our results with an example from mesoscopic physics. We also extend our approach beyond linear response: for Markovian dynamics, it reveals a connection between the TUR and current fluctuation theorems.
Collapse
Affiliation(s)
- Katarzyna Macieszczak
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom
| | - Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
12
|
Abstract
The thermoelectric properties of a three-terminal quantum spin Hall (QSH) sample are examined. The inherent helicity of the QSH sample helps to generate a large charge power efficiently. Along with charge the system can be designed to work as a highly efficient spin heat engine too. The advantage of a helical over a chiral sample is that, while a multiterminal quantum Hall sample can only work as a quantum heat engine due to broken time reversal (TR) symmetry, a multiterminal QSH system can work effectively as both a charge or spin heat engine and as a charge or spin refrigerator as the TR symmetry is preserved.
Collapse
Affiliation(s)
- Arjun Mani
- School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni 752050, India
| | - Colin Benjamin
- School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni 752050, India
| |
Collapse
|
13
|
Brandner K, Hanazato T, Saito K. Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport. PHYSICAL REVIEW LETTERS 2018; 120:090601. [PMID: 29547314 DOI: 10.1103/physrevlett.120.090601] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/28/2017] [Indexed: 06/08/2023]
Abstract
For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Taro Hanazato
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
14
|
Brandner K, Bauer M, Seifert U. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. PHYSICAL REVIEW LETTERS 2017; 119:170602. [PMID: 29219425 DOI: 10.1103/physrevlett.119.170602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 06/07/2023]
Abstract
We identify a universal indicator for the impact of coherence on periodically driven quantum devices by dividing their power output into a classical contribution and one stemming solely from superpositions. Specializing to Lindblad dynamics and small driving amplitudes, we derive general upper bounds on both the coherent and the total power of cyclic heat engines. These constraints imply that, for sufficiently slow driving, coherence inevitably leads to power losses in the linear-response regime. We illustrate our theory by working out the experimentally relevant example of a single-qubit engine.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Michael Bauer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
15
|
Zhang R, Li QW, Tang FR, Yang XQ, Bai L. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Phys Rev E 2017; 96:022133. [PMID: 28950616 DOI: 10.1103/physreve.96.022133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 06/07/2023]
Abstract
We investigate the performance at a given power of a thermoelectric heat engine with broken time-reversal symmetry, and derive analytically the efficiency at a given power of a thermoelectric generator within linear irreversible thermodynamics. A universal bound on the efficiency of the thermoelectric heat engine is achieved under a strong constraint on the Onsager coefficients, and some interesting features are further revealed. Our results demonstrate that there exists a trade-off between efficiency and power output, and the efficiency at a given power may surpass the Curzon-Ahlborn limit due to broken time-reversal symmetry. Moreover, optimal efficiency at a given power can be achieved, which indicates that broken time-reversal symmetry offers physically allowed ways to optimize the performance of heat engines. Our study may contribute to the interesting guidelines for optimizing actual engines.
Collapse
Affiliation(s)
- Rong Zhang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qian-Wen Li
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - F R Tang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - X Q Yang
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - L Bai
- School of Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
16
|
Samuelsson P, Kheradsoud S, Sothmann B. Optimal Quantum Interference Thermoelectric Heat Engine with Edge States. PHYSICAL REVIEW LETTERS 2017; 118:256801. [PMID: 28696742 DOI: 10.1103/physrevlett.118.256801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 06/07/2023]
Abstract
We show theoretically that a thermoelectric heat engine, operating exclusively due to quantum-mechanical interference, can reach optimal linear-response performance. A chiral edge state implementation of a close-to-optimal heat engine is proposed in an electronic Mach-Zehnder interferometer with a mesoscopic capacitor coupled to one arm. We demonstrate that the maximum power and corresponding efficiency can reach 90% and 83%, respectively, of the theoretical maximum. The proposed heat engine can be realized with existing experimental techniques and has a performance robust against moderate dephasing.
Collapse
Affiliation(s)
- Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Sara Kheradsoud
- Physics Department and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Björn Sothmann
- Theoretische Physik, Universität Duisburg-Essen and CENIDE, D-47048 Duisburg, Germany
| |
Collapse
|
17
|
Shiraishi N, Saito K, Tasaki H. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. PHYSICAL REVIEW LETTERS 2016; 117:190601. [PMID: 27858428 DOI: 10.1103/physrevlett.117.190601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
For a general thermodynamic system described as a Markov process, we prove a general lower bound for dissipation in terms of the square of the heat current, thus establishing that nonvanishing current inevitably implies dissipation. This leads to a universal trade-off relation between efficiency and power, with which we rigorously prove that a heat engine with nonvanishing power never attains the Carnot efficiency. Our theory applies to systems arbitrarily far from equilibrium, and does not assume any specific symmetry of the model.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hal Tasaki
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
18
|
Proesmans K, Cleuren B, Van den Broeck C. Power-Efficiency-Dissipation Relations in Linear Thermodynamics. PHYSICAL REVIEW LETTERS 2016; 116:220601. [PMID: 27314707 DOI: 10.1103/physrevlett.116.220601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 06/06/2023]
Abstract
We derive general relations between the maximum power, maximum efficiency, and minimum dissipation regimes from linear irreversible thermodynamics. The relations simplify further in the presence of a particular symmetry of the Onsager matrix, which can be derived from detailed balance. The results are illustrated on a periodically driven system and a three-terminal device subject to an external magnetic field.
Collapse
|
19
|
Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output. ENTROPY 2016. [DOI: 10.3390/e18060208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Yamamoto K, Hatano N. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042165. [PMID: 26565226 DOI: 10.1103/physreve.92.042165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 06/05/2023]
Abstract
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.
Collapse
Affiliation(s)
- Kaoru Yamamoto
- Department of Physics, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Naomichi Hatano
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
21
|
Proesmans K, Van den Broeck C. Onsager Coefficients in Periodically Driven Systems. PHYSICAL REVIEW LETTERS 2015; 115:090601. [PMID: 26371634 DOI: 10.1103/physrevlett.115.090601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 06/05/2023]
Abstract
We evaluate the Onsager matrix for a system under time-periodic driving by considering all its Fourier components. By application of the second law, we prove that all the fluxes converge to zero in the limit of zero dissipation. Reversible efficiency can never be reached at finite power. The implication for an Onsager matrix, describing reduced fluxes, is that its determinant has to vanish. In the particular case of only two fluxes, the corresponding Onsager matrix becomes symmetric.
Collapse
|
22
|
Jiang JH, Agarwalla BK, Segal D. Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry. PHYSICAL REVIEW LETTERS 2015; 115:040601. [PMID: 26252673 DOI: 10.1103/physrevlett.115.040601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Universal properties of the statistics of stochastic efficiency for mesoscopic time-reversal symmetry broken energy transducers are revealed in the Gaussian approximation. We also discuss how the second law of thermodynamics restricts the statistics of stochastic efficiency. The tight-coupling limit becomes unfavorable, characterized by an infinitely broad distribution of efficiency at all times, when time-reversal symmetry breaking leads to an asymmetric Onsager response matrix. The underlying physics is demonstrated through the quantum Hall effect and further elaborated in a triple-quantum-dot three-terminal thermoelectric engine.
Collapse
Affiliation(s)
- Jian-Hua Jiang
- Department of Physics, Soochow University, 1 Shizi Street, Suzhou 215006, China
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Bijay Kumar Agarwalla
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|