1
|
Zhou ZY, Xiang ZL, You JQ, Nori F. Work statistics in non-Hermitian evolutions with Hermitian endpoints. Phys Rev E 2021; 104:034107. [PMID: 34654123 DOI: 10.1103/physreve.104.034107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can be challenging in non-Hermitian systems due to the change of state norm. To tackle this problem, we modify the two-point measurement method in Hermitian systems. The modified method can be applied to non-Hermitian systems which are Hermitian before and after the evolution. In Hermitian systems, our method is equivalent to the two-point measurement method. When the system is non-Hermitian, our results represent a projection of the statistics in a larger Hermitian system. As an example, we calculate the work statistics in a non-Hermitian Su-Schrieffer-Heeger model. Our results reveal several differences between the work statistics in non-Hermitian systems and the one in Hermitian systems.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.,Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100094, China
| | - Ze-Liang Xiang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - J Q You
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100094, China.,Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.,RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan.,Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
2
|
Sone A, Deffner S. Quantum and Classical Ergotropy from Relative Entropies. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1107. [PMID: 34573732 PMCID: PMC8469566 DOI: 10.3390/e23091107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.
Collapse
Affiliation(s)
- Akira Sone
- Aliro Technologies, Inc., Boston, MA 02135, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
- Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| |
Collapse
|
3
|
Yeo J. Symmetry and its breaking in a path-integral approach to quantum Brownian motion. Phys Rev E 2020; 100:062107. [PMID: 31962505 DOI: 10.1103/physreve.100.062107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 11/07/2022]
Abstract
We study the Caldeira-Leggett model where a quantum Brownian particle interacts with an environment or a bath consisting of a collection of harmonic oscillators in the path-integral formalism. Compared to the contours that the paths take in the conventional Schwinger-Keldysh formalism, the paths in our study are deformed in the complex time plane as suggested by the recent study by C. Aron, G. Biroli, and L. F. Cugliandolo [SciPost Phys. 4, 008 (2018)10.21468/SciPostPhys.4.1.008]. This is done to investigate the connection between the symmetry properties in the Schwinger-Keldysh action and the equilibrium or nonequilibrium nature of the dynamics in an open quantum system. We derive the influence functional explicitly in this setting, which captures the effect of the coupling to the bath. We show that in equilibrium the action and the influence functional are invariant under a set of transformations of path-integral variables. The fluctuation-dissipation relation is obtained as a consequence of this symmetry. When the system is driven by an external time-dependent protocol, the symmetry is broken. From the terms that break the symmetry, we derive a quantum Jarzynski-like equality for a quantum mechanical worklike quantity given as a function of fluctuating quantum trajectory. In the classical limit, the transformations becomes those used in the functional integral formalism of the classical stochastic thermodynamics to derive the classical fluctuation theorem.
Collapse
Affiliation(s)
- Joonhyun Yeo
- Department of Physics, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
4
|
Wu Y, Liu W, Geng J, Song X, Ye X, Duan CK, Rong X, Du J. Observation of parity-time symmetry breaking in a single-spin system. Science 2019; 364:878-880. [PMID: 31147518 DOI: 10.1126/science.aaw8205] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023]
Abstract
Steering the evolution of single spin systems is crucial for quantum computing and quantum sensing. The dynamics of quantum systems has been theoretically investigated with parity-time-symmetric Hamiltonians exhibiting exotic properties. Although parity-time symmetry has been explored in classical systems, its observation in a single quantum system remains elusive. We developed a method to dilate a general parity-time-symmetric Hamiltonian into a Hermitian one. The quantum state evolutions ranging from regions of unbroken to broken [Formula: see text] symmetry have been observed with a single nitrogen-vacancy center in diamond. Owing to the universality of the dilation method, our result provides a route for further exploiting and understanding the exotic properties of parity-time symmetric Hamiltonian in quantum systems.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenquan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jianpei Geng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingrui Song
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiangyu Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Kui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China. .,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China. .,CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Wei BB. Quantum work relations and response theory in parity-time-symmetric quantum systems. Phys Rev E 2018; 97:012114. [PMID: 29448348 DOI: 10.1103/physreve.97.012114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/07/2022]
Abstract
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT-) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT-symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT-symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Collapse
Affiliation(s)
- Bo-Bo Wei
- School of Physics and Energy, Shenzhen University, 518060 Shenzhen, China
| |
Collapse
|
6
|
Trypogeorgos D, Valdés-Curiel A, Spielman IB, Emary C. Perpetual emulation threshold of P T -symmetric Hamiltonians. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL 2018; 51:10.1088/1751-8121/aacc5e. [PMID: 30996732 PMCID: PMC6463308 DOI: 10.1088/1751-8121/aacc5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We describe a technique to emulate the dynamics of two-level P T -symmetric spin Hamiltonians, replete with gain and loss, using the unitary dynamics of a larger quantum system. The two-level system in question is embedded in a subspace of a four-level Hamiltonian, with the exterior levels acting as reservoirs. The emulation time is normally finite, limited by the depletion of the reservoirs. We show that it is possible to emulate the desired behaviour of the P T -symmetric Hamiltonian without depleting the reservoir levels, by including an additional coupling between them. This extends the emulation time indefinitely, when in the unbroken symmetry phase of the non-unitary P T dynamics. We propose a realistic experimental implementation using dynamically decoupled magnetic sublevels of ultracold atoms.
Collapse
Affiliation(s)
- D Trypogeorgos
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742, United States of America
| | - A Valdés-Curiel
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742, United States of America
| | - I B Spielman
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742, United States of America
| | - C Emary
- Joint Quantum Centre Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Horowitz JM, Esposito M. Work producing reservoirs: Stochastic thermodynamics with generalized Gibbs ensembles. Phys Rev E 2016; 94:020102. [PMID: 27627226 DOI: 10.1103/physreve.94.020102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 06/06/2023]
Abstract
We develop a consistent stochastic thermodynamics for environments composed of thermodynamic reservoirs in an external conservative force field, that is, environments described by the generalized or Gibbs canonical ensemble. We demonstrate that small systems weakly coupled to such reservoirs exchange both heat and work by verifying a local detailed balance relation for the induced stochastic dynamics. Based on this analysis, we help to rationalize the observation that nonthermal reservoirs can increase the efficiency of thermodynamic heat engines.
Collapse
Affiliation(s)
- Jordan M Horowitz
- Department of Physics, Physics of Living Systems Group, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
8
|
Deffner S, Paz JP, Zurek WH. Quantum work and the thermodynamic cost of quantum measurements. Phys Rev E 2016; 94:010103. [PMID: 27575061 DOI: 10.1103/physreve.94.010103] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 11/07/2022]
Abstract
Quantum work is usually determined from two projective measurements of the energy at the beginning and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency we introduce a paradigm that relies only on the expected change of the average energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derive a modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free energy. A comparison of our results with the standard approach allows one to quantify the informational cost of projective measurements.
Collapse
Affiliation(s)
- Sebastian Deffner
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Juan Pablo Paz
- Departamento de Física, FCEyN, UBA, Ciudad Universitaria Pabellón 1, 1428 Buenos Aires, Argentina.,IFIBA CONICET, FCEyN, UBA, Ciudad Universitaria Pabellón 1, 1428 Buenos Aires, Argentina
| | - Wojciech H Zurek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Suomela S, Kutvonen A, Ala-Nissila T. Quantum jump model for a system with a finite-size environment. Phys Rev E 2016; 93:062106. [PMID: 27415207 DOI: 10.1103/physreve.93.062106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 06/06/2023]
Abstract
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.
Collapse
Affiliation(s)
- S Suomela
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11100, 00076 Aalto, Finland
| | - A Kutvonen
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11100, 00076 Aalto, Finland
| | - T Ala-Nissila
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11100, 00076 Aalto, Finland
- Department of Physics, P.O. Box 1843, Brown University, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|
10
|
Abstract
Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.
Collapse
|
11
|
Deffner S, Saxena A. Quantum work statistics of charged Dirac particles in time-dependent fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032137. [PMID: 26465456 DOI: 10.1103/physreve.92.032137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 06/05/2023]
Abstract
The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.
Collapse
Affiliation(s)
- Sebastian Deffner
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Avadh Saxena
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
12
|
Van den Broeck C, Toral R. Stochastic thermodynamics for linear kinetic equations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012127. [PMID: 26274144 DOI: 10.1103/physreve.92.012127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Stochastic thermodynamics is formulated for variables that are odd under time reversal. The invariance under spatial rotation of the collision rates due to the isotropy of the heat bath is shown to be a crucial ingredient. An alternative detailed fluctuation theorem is derived, expressed solely in terms of forward statistics. It is illustrated for a linear kinetic equation with kangaroo rates.
Collapse
Affiliation(s)
| | - R Toral
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), Campus UIB, Palma de Mallorca, Spain
| |
Collapse
|