1
|
Jimidar ISM, Sotthewes K, Gardeniers H, Desmet G, van der Meer D. Self-organization of agitated microspheres on various substrates. SOFT MATTER 2022; 18:3660-3677. [PMID: 35485633 PMCID: PMC9116155 DOI: 10.1039/d2sm00432a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 05/30/2023]
Abstract
The vibration dynamics of relatively large granular grains is extensively treated in the literature, but comparable studies on the self-assembly of smaller agitated beads are lacking. In this work, we investigate how the particle properties and the properties of the underlying substrate surface affect the dynamics and self-organization of horizontally agitated monodisperse microspheres with diameters between 3 and 10 μm. Upon agitation, the agglomerated hydrophilic silica particles locally leave traces of particle monolayers as they move across the flat uncoated and fluorocarbon-coated silicon substrates. However, on the micromachined silicon tray with relatively large surface roughness, the agitated silica agglomerates form segregated bands reminiscent of earlier studies on granular suspensions or Faraday heaps. On the other hand, the less agglomerated hydrophobic polystyrene particles form densely occupied monolayer arrangements regardless of the underlying substrate. We explain the observations by considering the relevant adhesion and friction forces between particles and underlying substrates as well as those among the particles themselves. Interestingly, for both types of microspheres, large areas of the fluorocarbon-coated substrates are covered with densely occupied particle monolayers. By qualitatively examining the morphology of the self-organized particle monolayers using the Voronoi approach, it is understood that these monolayers are highly disordered, i.e., multiple symmetries coexist in the self-organized monolayers. However, more structured symmetries are identified in the monolayers of the agitated polystyrene microspheres on all the substrates, albeit not all precisely positioned on a hexagonal lattice. On the other hand, both the silica and polystyrene monolayers on the bare silicon substrates transition into less disordered structures as time progresses. Using Kelvin probe force microscopy measurements, we show that due to the tribocharging phenomenon, the formation of particle monolayers is promoted on the fluorocarbon surface, i.e., a local electrostatic attraction exists between the particle and the substrate.
Collapse
Affiliation(s)
- Ignaas S M Jimidar
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Devaraj van der Meer
- Physics of Fluids group, Max Plank Center Twente for Complex Fluid Dynamics, J. M. Burgers Centre for Fluid Dynamics, MESA+ Institute and Faculty of Science and Technology, University of Twente, P. O. Box 217, The Netherlands
| |
Collapse
|
2
|
Kollmer JE, Shreve T, Claussen J, Gerth S, Salamon M, Uhlmann N, Schröter M, Pöschel T. Migrating Shear Bands in Shaken Granular Matter. PHYSICAL REVIEW LETTERS 2020; 125:048001. [PMID: 32794800 DOI: 10.1103/physrevlett.125.048001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
When dense granular matter is sheared, the strain is often localized in shear bands. After some initial transient these shear bands become stationary. Here, we introduce a setup that periodically creates horizontally aligned shear bands which then migrate upward through the sample. Using x-ray radiography we demonstrate that this effect is caused by dilatancy, the reduction in volume fraction occurring in sheared dense granular media. Further on, we argue that these migrating shear bands are responsible for the previously reported periodic inflating and collapsing of the material.
Collapse
Affiliation(s)
- Jonathan E Kollmer
- Institute for Multiscale Simulation of Particulate Systems, Cauerstraße 3, 91058 Erlangen, Germany
- Department of Physics, 2401 Stinson Drive, North Carolina State University, Raleigh, North Carolina 27695, USA
- Experimentelle Astrophysik, Universitt Duisburg-Essen, Lotharstraße 1-21, 47057 Duisburg, Germany
| | - Tara Shreve
- Institute for Multiscale Simulation of Particulate Systems, Cauerstraße 3, 91058 Erlangen, Germany
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Joelle Claussen
- Fraunhofer-Entwicklungszentrum Röntgentechnik, Flugplatzstraße 75, 90768 Fürth, Germany
| | - Stefan Gerth
- Fraunhofer-Entwicklungszentrum Röntgentechnik, Flugplatzstraße 75, 90768 Fürth, Germany
| | - Michael Salamon
- Fraunhofer-Entwicklungszentrum Röntgentechnik, Flugplatzstraße 75, 90768 Fürth, Germany
| | - Norman Uhlmann
- Fraunhofer-Entwicklungszentrum Röntgentechnik, Flugplatzstraße 75, 90768 Fürth, Germany
| | - Matthias Schröter
- Institute for Multiscale Simulation of Particulate Systems, Cauerstraße 3, 91058 Erlangen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Thorsten Pöschel
- Institute for Multiscale Simulation of Particulate Systems, Cauerstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
3
|
|
4
|
Codina J, Pagonabarraga I. Asymmetric and long range interactions in shaken granular media. J Chem Phys 2019; 151:164903. [PMID: 31675898 DOI: 10.1063/1.5123304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at contact in the direction of shaking. This relative interaction is further studied by fixing the intruders in the simulation box where we identify effective mechanical forces and torques between particles and quantify an emergent long range attractive force as a function of the shaking relative angle, the amplitude, and the packing density of grains. We determine the local density and kinetic energy profiles of granular particles along the axis of the dimer to find no gradients in the density fields and additive gradients in the kinetic energies.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, 325001 Wenzhou, China
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
5
|
Jahanshahi S, Lozano C, Ten Hagen B, Bechinger C, Löwen H. Colloidal Brazil nut effect in microswimmer mixtures induced by motility contrast. J Chem Phys 2019; 150:114902. [PMID: 30901986 DOI: 10.1063/1.5083098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional to the imposed light intensity, and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-dependent) gravity such that one can define effective "heaviness" of the self-propelled particles. In analogy to shaken granular matter in gravity, we define a "colloidal Brazil nut effect" if the heavier particles are floating on top of the lighter ones. Using extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and explain it based on a generalized Archimedes' principle within the effective equilibrium model: heavy particles are levitated in a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.
Collapse
Affiliation(s)
- Soudeh Jahanshahi
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Celia Lozano
- Fachbereich Physik, Universität Konstanz, Konstanz D-78457, Germany
| | - Borge Ten Hagen
- Physics of Fluids Group and Max Planck Center Twente, Department of Science and Technology, MESA+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands
| | | | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Investigation of causes of layer inversion and prediction of inversion velocity in liquid fluidizations of binary particle mixtures. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Reichhardt C, Thibault J, Papanikolaou S, Reichhardt CJO. Laning and clustering transitions in driven binary active matter systems. Phys Rev E 2018; 98:022603. [PMID: 30253470 DOI: 10.1103/physreve.98.022603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 06/08/2023]
Abstract
It is well known that a binary system of nonactive disks that experience driving in opposite directions exhibits jammed, phase separated, disordered, and laning states. In active matter systems, such as a crowd of pedestrians, driving in opposite directions is common and relevant, especially in conditions which are characterized by high pedestrian density and emergency. In such cases, the transition from laning to disordered states may be associated with the onset of a panic state. We simulate a laning system containing active disks that obey run-and-tumble dynamics, and we measure the drift mobility and structure as a function of run length, disk density, and drift force. The activity of each disk can be quantified based on the correlation timescale of the velocity vector. We find that in some cases, increasing the activity can increase the system mobility by breaking up jammed configurations; however, an activity level that is too high can reduce the mobility by increasing the probability of disk-disk collisions. In the laning state, the increase of activity induces a sharp transition to a disordered strongly fluctuating state with reduced mobility. We identify a novel drive-induced clustered laning state that remains stable even at densities below the activity-induced clustering transition of the undriven system. We map out the dynamic phase diagrams highlighting transitions between the different phases as a function of activity, drive, and density.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Thibault
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Mechanical and Aerospace Engineering, Western Virginia University, Morgantown, West Virginia 26506, USA
| | - S Papanikolaou
- Department of Mechanical and Aerospace Engineering, Western Virginia University, Morgantown, West Virginia 26506, USA
- Department of Physics, Western Virginia University, Morgantown, West Virginia 26506, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
8
|
Ashour A, Wegner S, Trittel T, Börzsönyi T, Stannarius R. Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. SOFT MATTER 2017; 13:402-414. [PMID: 27878164 DOI: 10.1039/c6sm02374f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.
Collapse
Affiliation(s)
- A Ashour
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany. and Faculty of Engineering and Technology, Future University, End of 90 St., New Cairo, Egypt
| | - S Wegner
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Trittel
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - R Stannarius
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| |
Collapse
|
9
|
Garcimartín A, Larrea I, Lozano C, Zuriguel I. Cluster splitting in granular segregation driven by horizontal shaking. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714004004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|