1
|
Jiang YF, Yao H. Pair-Density-Wave Superconductivity: A Microscopic Model on the 2D Honeycomb Lattice. PHYSICAL REVIEW LETTERS 2024; 133:176501. [PMID: 39530812 DOI: 10.1103/physrevlett.133.176501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Pair-density wave (PDW) is a long-sought exotic state with oscillating superconducting order without external magnetic field. So far it has been rare in establishing a 2D microscopic model with PDW long-range order in its ground state. Here, we propose to study PDW superconductivity in a minimal model of spinless fermions (or spin-polarized electrons) on the honeycomb lattice with nearest-neighbor and next-nearest-neighbor interaction V_{1} and V_{2}, respectively. By performing a state-of-the-art density-matrix renormalization group study of this t-V_{1}-V_{2} model at finite doping on six-leg and eight-leg honeycomb cylinders, we show that the ground state exhibits PDW ordering (namely quasi-long-range order with a divergent PDW susceptibility). Remarkably this PDW state persists on the wider cylinder with 2D-like Fermi surfaces. To the best of our knowledge, this is probably the first controlled numerical evidence of PDW in systems with 2D-like Fermi surfaces.
Collapse
|
2
|
Lu H, Wu HQ, Chen BB, Sun K, Yang Meng Z. From fractional quantum anomalous Hall smectics to polar smectic metals: nontrivial interplay between electronic liquid crystal order and topological order in correlated topological flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108003. [PMID: 39222655 DOI: 10.1088/1361-6633/ad7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Symmetry-breaking orders can not only compete with each other, but also be intertwined, and the intertwined topological and symmetry-breaking orders make the situation more intriguing. This work examines the archetypal correlated flat band model on a checkerboard lattice at fillingν=2/3and we find that the unique interplay between smectic charge order and topological order gives rise to two novel quantum states. As the interaction strength increases, the system first transitions from a Fermi liquid (FL) into FQAH smectic (FQAHS) state, where the topological order coexists cooperatively with smectic charge order with enlarged ground-state degeneracy and interestingly, the Hall conductivity isσxy=ν=2/3, different from the band-folding or doping scenarios. Further increasing the interaction strength, the system undergoes another quantum phase transition and evolves into a polar smectic metal (PSM) state. This emergent PSM is an anisotropic non-Fermi liquid, whose interstripe tunneling is irrelevant while it is metallic inside each stripe. Different from the FQAHS and conventional smectic orders, this PSM spontaneously breaks the two-fold rotational symmetry, resulting in a nonzero electric dipole moment and ferroelectric order. In addition to the exotic ground states, large-scale numerical simulations are also used to study low-energy excitations and thermodynamic characteristics. We find that the onset temperature of the incompressible FQAHS state, which also coincides with the onset of non-polar smectic order, is dictated by the magneto-roton modes. Above this onset temperature, the PSM state exists at an intermediate-temperature regime. Although theT = 0 quantum phase transition between PSM and FQAHS is first order, the thermal FQAHS-PSM transition could be continuous. We expect the features of the exotic states and thermal phase transitions could be accessed in future experiments.
Collapse
Affiliation(s)
- Hongyu Lu
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Han-Qing Wu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bin-Bin Chen
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zi Yang Meng
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
3
|
Cao L, Xue Y, Wang Y, Zhang FC, Kang J, Gao HJ, Mao J, Jiang Y. Directly visualizing nematic superconductivity driven by the pair density wave in NbSe 2. Nat Commun 2024; 15:7234. [PMID: 39174520 PMCID: PMC11341552 DOI: 10.1038/s41467-024-51558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their interactions with different types of CDWs remains limited. Here, utilizing scanning tunneling microscopy, we unveil the subtle correlations between PDW ground states and two distinct CDW phases - namely, anion-centered-CDW (AC-CDW) and hollow-centered-CDW (HC-CDW) - in 2H-NbSe2. In both CDW regions, we observe coexisting PDWs with a commensurate structure that aligns with the underlying CDW phase. The superconducting gap size, Δ(r), related to the pairing order parameter is in phase with the charge density in both CDW regions. Meanwhile, the coherence peak height, H(r), qualitatively reflecting the electron-pair density, exhibits a phase difference of approximately 2π/3 relative to the CDW. The three-fold rotational symmetry is preserved in the HC-CDW region but is spontaneously broken in the AC-CDW region due to the PDW state, leading to the emergence of nematic superconductivity.
Collapse
Affiliation(s)
- Lu Cao
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Xue
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbo Wang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Chun Zhang
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Kang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Hong-Jun Gao
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinhai Mao
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuhang Jiang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Kawasaki S, Tsukuda N, Lin C, Zheng GQ. Strain-induced long-range charge-density wave order in the optimally doped Bi 2Sr 2-xLa xCuO 6 superconductor. Nat Commun 2024; 15:5082. [PMID: 38877031 PMCID: PMC11178839 DOI: 10.1038/s41467-024-49225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
The mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by 63,65Cu-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2-xLaxCuO6 superconductor, induced by in-plane strain exceeding ∣ε∣ = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates.
Collapse
Affiliation(s)
| | - Nao Tsukuda
- Department of Physics, Okayama University, Okayama, Japan
| | - Chengtian Lin
- Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany
| | - Guo-Qing Zheng
- Department of Physics, Okayama University, Okayama, Japan.
| |
Collapse
|
5
|
Aishwarya A, May-Mann J, Raghavan A, Nie L, Romanelli M, Ran S, Saha SR, Paglione J, Butch NP, Fradkin E, Madhavan V. Magnetic-field-sensitive charge density waves in the superconductor UTe 2. Nature 2023; 618:928-933. [PMID: 37380690 DOI: 10.1038/s41586-023-06005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/23/2023] [Indexed: 06/30/2023]
Abstract
The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1-4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5-8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.
Collapse
Affiliation(s)
- Anuva Aishwarya
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian May-Mann
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Arjun Raghavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laimei Nie
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Marisa Romanelli
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheng Ran
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Physics, Washington University in St. Louis, St Louis, MO, USA
| | - Shanta R Saha
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - Johnpierre Paglione
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Nicholas P Butch
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Eduardo Fradkin
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Vidya Madhavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Wu YM, Nosov PA, Patel AA, Raghu S. Pair Density Wave Order from Electron Repulsion. PHYSICAL REVIEW LETTERS 2023; 130:026001. [PMID: 36706394 DOI: 10.1103/physrevlett.130.026001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
A pair density wave (PDW) is a superconductor whose order parameter is a periodic function of space, without an accompanying spatially uniform component. Since PDWs are not the outcome of a weak-coupling instability of a Fermi liquid, a generic pairing mechanism for PDW order has remained elusive. We describe and solve models having robust PDW phases. To access the intermediate coupling limit, we invoke large-N limits of Fermi liquids with repulsive BCS interactions that admit saddle point solutions. We show that the requirements for long-range PDW order are that the repulsive BCS couplings must be nonmonotonic in space and that their strength must exceed a threshold value. We obtain a phase diagram with both finite temperature transitions to PDW order and a T=0 quantum critical point, where non-Fermi liquid behavior occurs.
Collapse
Affiliation(s)
- Yi-Ming Wu
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| | - P A Nosov
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| | - Aavishkar A Patel
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - S Raghu
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Jin JT, Jiang K, Yao H, Zhou Y. Interplay between Pair Density Wave and a Nested Fermi Surface. PHYSICAL REVIEW LETTERS 2022; 129:167001. [PMID: 36306741 DOI: 10.1103/physrevlett.129.167001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
We show that spontaneous time-reversal-symmetry (TRS) breaking can naturally arise from the interplay between pair density wave (PDW) ordering at multiple momenta and nesting of Fermi surfaces (FSs). Concretely, we consider the PDW superconductivity on a hexagonal lattice with nested FS at 3/4 electron filling, which is related to a recently discovered superconductor CsV_{3}Sb_{5}. Because of nesting of the FSs, each momentum k on the FS has at least two counterparts -k±Q_{α} (α=1, 2, 3) on the FS to form finite momentum (±Q_{α}) Cooper pairs, resulting in a TRS and inversion broken PDW state with stable Bogoliubov Fermi pockets. Various spectra, including (local) density of states, electron spectral function, and the effect of quasiparticle interference, have been investigated. The partial melting of the PDW will give rise to 4×4 and (4/sqrt[3])×(4/sqrt[3]) charge density wave (CDW) orders, in addition to the 2×2 CDW. Possible implications to real materials such as CsV_{3}Sb_{5} and future experiments have been discussed further.
Collapse
Affiliation(s)
- Jin-Tao Jin
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Jiang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Yi Zhou
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Wang S, Choubey P, Chong YX, Chen W, Ren W, Eisaki H, Uchida S, Hirschfeld PJ, Davis JCS. Scattering interference signature of a pair density wave state in the cuprate pseudogap phase. Nat Commun 2021; 12:6087. [PMID: 34667154 PMCID: PMC8526682 DOI: 10.1038/s41467-021-26028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap [Formula: see text] in real-space, and a characteristic quasiparticle scattering interference (QPI) signature [Formula: see text] in wavevector space. By studying strongly underdoped Bi2Sr2CaDyCu2O8 at hole-density ~0.08 in the superconductive phase, we detect the 8a0-periodic [Formula: see text] modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature [Formula: see text] that is predicted specifically for the temperature dependence of an 8a0-periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d-wave superconductivity to a pure PDW state in the Bi2Sr2CaDyCu2O8 pseudogap phase.
Collapse
Affiliation(s)
- Shuqiu Wang
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Peayush Choubey
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Germany
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Yi Xue Chong
- LASSP, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Weijiong Chen
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Wangping Ren
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - H Eisaki
- Institute of Advanced Industrial Science and Tech., Tsukuba, Ibaraki, Japan
| | - S Uchida
- Institute of Advanced Industrial Science and Tech., Tsukuba, Ibaraki, Japan
| | | | - J C Séamus Davis
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- LASSP, Department of Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, University College Cork, Cork, Ireland.
- Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| |
Collapse
|
9
|
Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity. Proc Natl Acad Sci U S A 2020; 117:14805-14811. [PMID: 32546526 PMCID: PMC7334493 DOI: 10.1073/pnas.2002429117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By making a variety of quantitative comparisons between electronic visualization experiments and a theory describing coexisting pair density wave and superconductive states in cuprates, we find striking correspondence throughout. Our model can thus explain the microscopic origins of many key atomic-scale phenomena of the cuprate broken-symmetry state. These observations are consistent with the possibility that a short-range pair density wave (PDW) state coexists with superconductivity below a critical hole density in Bi2Sr2CaCu2O8, that the charge density wave modulations in cuprates are a consequence of the PDW state, that the cuprate pseudogap is the antinodal gap of the PDW, and that the critical point in the cuprate phase diagram occurs due to disappearance of the PDW. The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states Nr,E is predicted at the terminal BiO surface of Bi2Sr2CaCu2O8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of Nr,E, the modulations of the coherence peak energy Δpr, and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space q-space. Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2Sr2CaCu2O8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.
Collapse
|
10
|
Abstract
A translation-invariant (TI) bipolaron theory of superconductivity based, like Bardeen–Cooper–Schrieffer theory, on Fröhlich Hamiltonian is presented. Here the role of Cooper pairs belongs to TI bipolarons which are pairs of spatially delocalized electrons whose correlation length of a coupled state is small. The presence of Fermi surface leads to the stabilization of such states in its vicinity and a possibility of their Bose–Einstein condensation (BEC). The theory provides a natural explanation of the existence of a pseudogap phase preceding the superconductivity and enables one to estimate the temperature of a transition T * from a normal state to a pseudogap one. It is shown that the temperature of BEC of TI bipolarons determines the temperature of a superconducting transition T c which depends not on the bipolaron effective mass but on the ordinary mass of a band electron. This removes restrictions on the upper limit of T c for a strong electron-phonon interaction. A natural explanation is provided for the angular dependence of the superconducting gap which is determined by the angular dependence of the phonon spectrum. It is demonstrated that a lot of experiments on thermodynamic and transport characteristics, Josephson tunneling and angle-resolved photoemission spectroscopy (ARPES) of high-temperature superconductors does not contradict the concept of a TI bipolaron mechanism of superconductivity in these materials. Possible ways of enhancing T c and producing new room-temperature superconductors are discussed on the basis of the theory suggested.
Collapse
|
11
|
Cheung SC, Shin JY, Lau Y, Chen Z, Sun J, Zhang Y, Müller MA, Eremin IM, Wright JN, Pasupathy AN. Dictionary learning in Fourier-transform scanning tunneling spectroscopy. Nat Commun 2020; 11:1081. [PMID: 32102995 PMCID: PMC7044214 DOI: 10.1038/s41467-020-14633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/17/2020] [Indexed: 11/15/2022] Open
Abstract
Modern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images. However, the Fourier transform fundamentally suffers from severe phase noise when applied to aperiodic images. Here, we report the development of an algorithm based on nonconvex optimization that directly uncovers the fundamental motifs present in a real-space image. Apart from being quantitatively superior to traditional Fourier analysis, we show that this algorithm also uncovers phase sensitive information about the underlying motif structure. We demonstrate its usefulness by studying scanning tunneling microscopy images of a Co-doped iron arsenide superconductor and prove that the application of the algorithm allows for the complete recovery of quasiparticle interference in this material. Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.
Collapse
Affiliation(s)
- Sky C Cheung
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - John Y Shin
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yenson Lau
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhengyu Chen
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ju Sun
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuqian Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Marvin A Müller
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Ilya M Eremin
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany.,National University of Science and Technology MISiS, 119049, Moscow, Russian Federation
| | - John N Wright
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
12
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Edkins SD, Kostin A, Fujita K, Mackenzie AP, Eisaki H, Uchida S, Sachdev S, Lawler MJ, Kim EA, Séamus Davis JC, Hamidian MH. Magnetic field-induced pair density wave state in the cuprate vortex halo. Science 2019; 364:976-980. [PMID: 31171694 DOI: 10.1126/science.aat1773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2019] [Indexed: 11/02/2022]
Abstract
High magnetic fields suppress cuprate superconductivity to reveal an unusual density wave (DW) state coexisting with unexplained quantum oscillations. Although routinely labeled a charge density wave (CDW), this DW state could actually be an electron-pair density wave (PDW). To search for evidence of a field-induced PDW, we visualized modulations in the density of electronic states N(r) within the halo surrounding Bi2Sr2CaCu2O8 vortex cores. We detected numerous phenomena predicted for a field-induced PDW, including two sets of particle-hole symmetric N(r) modulations with wave vectors QP and 2Q P , with the latter decaying twice as rapidly from the core as the former. These data imply that the primary field-induced state in underdoped superconducting cuprates is a PDW, with approximately eight CuO2 unit-cell periodicity and coexisting with its secondary CDWs.
Collapse
Affiliation(s)
- S D Edkins
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.,School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland
| | - A Kostin
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - K Fujita
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Condensed Matter Physics Department, Brookhaven National Laboratory, Upton, NY, USA
| | - A P Mackenzie
- School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland.,Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - H Eisaki
- Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - S Uchida
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Michael J Lawler
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Department of Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA
| | - E-A Kim
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - J C Séamus Davis
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA. .,Condensed Matter Physics Department, Brookhaven National Laboratory, Upton, NY, USA.,Department of Physics, University College Cork, Cork T12R5C, Ireland.,Clarendon Laboratory, Oxford University, Oxford, OX1 3PU, UK
| | - M H Hamidian
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA. .,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Graham M, Morr DK. Josephson Scanning Tunneling Spectroscopy in d_{x^{2}-y^{2}}-Wave Superconductors: A Probe for the Nature of the Pseudogap in the Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2019; 123:017001. [PMID: 31386405 DOI: 10.1103/physrevlett.123.017001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/02/2018] [Indexed: 06/10/2023]
Abstract
Recent advances in the development of Josephson scanning tunneling spectroscopy (JSTS) have opened a new path for the exploration of unconventional superconductors. We demonstrate that the critical current I_{c}, measured via JSTS, images the spatial form of the superconducting order parameter in d_{x^{2}-y^{2}}-wave superconductors around defects and in the Fulde-Ferrell-Larkin-Ovchinnikov state. Moreover, we show that I_{c} probes the existence of phase-incoherent superconducting correlations in the pseudogap region of the cuprate superconductors, thus providing unprecedented insight into its elusive nature. These results provide the missing theoretical link between the experimentally measured I_{c} and the spatial structure of the superconducting order parameter.
Collapse
Affiliation(s)
- Martin Graham
- University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Dirk K Morr
- University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
15
|
Tepper J, Barnaś J. Klein tunnelling and Hartman effect in graphene junctions with proximity exchange field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:225302. [PMID: 30812020 DOI: 10.1088/1361-648x/ab0b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tunnelling of electrons in graphene-based junctions is studied theoretically. Graphene is assumed to be deposited either directly on a ferromagnetic insulator or on a few atomic layers of boron nitride which separate graphene from a metallic ferromagnetic substrate. Such junctions can be formed by appropriate external gating of the corresponding system. To describe low-energy electronic states near the Dirac points, certain effective Hamiltonians available in the relevant literature are used. These Hamiltonians include staggered potential and exchange interaction due to ferromagnetic substrates. Tunnelling in the systems under consideration is then spin-dependent. The main focus is on Klein tunnelling and also on the group delay and the associated Hartman effect. The impact of a gap induced in the spectrum at the Dirac points on tunnelling is analysed in detail.
Collapse
Affiliation(s)
- J Tepper
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | | |
Collapse
|
16
|
Tu WL, Lee TK. Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors. Sci Rep 2019; 9:1719. [PMID: 30737472 PMCID: PMC6368576 DOI: 10.1038/s41598-018-38288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.
Collapse
Affiliation(s)
- Wei-Lin Tu
- Department of Physics, National Taiwan University, Daan, Taipei, 10617, Taiwan
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
17
|
Local particle-hole pair excitations by SU(2) symmetry fluctuations. Sci Rep 2017; 7:3477. [PMID: 28615633 PMCID: PMC5471275 DOI: 10.1038/s41598-017-01538-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
Understanding the pseudo-gap phase which opens in the under-doped regime of cuprate superconductors is one of the most enduring challenges of the physics of these compounds. A depletion in the electronic density of states is observed, which is gapping out part of the Fermi surface, leading to the formation of mysterious lines of massless excitations- the Fermi arcs. Here we give a new theoretical account of the physics of the pseudo-gap phase in terms of the emergence of local patches of particle-hole pairs generated by SU(2) symmetry fluctuations. The proliferation of these local patches accounts naturally for the robustness of the pseudo-gap phase to disturbances like disorder or magnetic field and is shown to gap out part of the Fermi surface, leading to the formation of the Fermi arcs. Most noticeably, we show that these patches induce a modulated charge distribution on the Oxygen atoms, in remarkable agreement with recent X-ray and STM observations.
Collapse
|
18
|
Commensurate 4 a0-period charge density modulations throughout the Bi 2Sr 2CaCu 2O 8+x pseudogap regime. Proc Natl Acad Sci U S A 2016; 113:12661-12666. [PMID: 27791157 DOI: 10.1073/pnas.1614247113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a0) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QA of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at [Formula: see text] throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8 These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state.
Collapse
|
19
|
Schattner Y, Gerlach MH, Trebst S, Berg E. Competing Orders in a Nearly Antiferromagnetic Metal. PHYSICAL REVIEW LETTERS 2016; 117:097002. [PMID: 27610877 DOI: 10.1103/physrevlett.117.097002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 06/06/2023]
Abstract
We study the onset of spin-density wave order in itinerant electron systems via a two-dimensional lattice model amenable to numerically exact, sign-problem-free determinantal quantum Monte Carlo simulations. The finite-temperature phase diagram of the model reveals a dome-shaped d-wave superconducting phase near the magnetic quantum phase transition. Above the critical superconducting temperature, an extended fluctuation regime manifests itself in the opening of a gap in the electronic density of states and an enhanced diamagnetic response. While charge density wave fluctuations are moderately enhanced in the proximity of the magnetic quantum phase transition, they remain short ranged. The striking similarity of our results to the phenomenology of many unconventional superconductors points a way to a microscopic understanding of such strongly coupled systems in a controlled manner.
Collapse
Affiliation(s)
- Yoni Schattner
- Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max H Gerlach
- Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
| | - Simon Trebst
- Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
| | - Erez Berg
- Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Kloss T, Montiel X, de Carvalho VS, Freire H, Pépin C. Charge orders, magnetism and pairings in the cuprate superconductors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:084507. [PMID: 27427401 DOI: 10.1088/0034-4885/79/8/084507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T (*). We discuss the implications of this scenario for a few key experiments.
Collapse
Affiliation(s)
- T Kloss
- IPhT, L'Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
21
|
Mou D, Sapkota A, Kung HH, Krapivin V, Wu Y, Kreyssig A, Zhou X, Goldman AI, Blumberg G, Flint R, Kaminski A. Discovery of an Unconventional Charge Density Wave at the Surface of K_{0.9}Mo_{6}O_{17}. PHYSICAL REVIEW LETTERS 2016; 116:196401. [PMID: 27232028 DOI: 10.1103/physrevlett.116.196401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 06/05/2023]
Abstract
We use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K_{0.9}Mo_{6}O_{17}. Not only does K_{0.9}Mo_{6}O_{17} lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T_{S_CDW}=220 K nearly twice that of the bulk CDW, T_{B_CDW}=115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combined with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.
Collapse
Affiliation(s)
- Daixiang Mou
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - A Sapkota
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - H-H Kung
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Viktor Krapivin
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yun Wu
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - A Kreyssig
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Xingjiang Zhou
- National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - A I Goldman
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - G Blumberg
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Rebecca Flint
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Adam Kaminski
- Division of Materials Science and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
22
|
Christensen MH, Jacobsen H, Maier TA, Andersen BM. Magnetic Fluctuations in Pair-Density-Wave Superconductors. PHYSICAL REVIEW LETTERS 2016; 116:167001. [PMID: 27152819 DOI: 10.1103/physrevlett.116.167001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La_{1.905}Ba_{0.095}CuO_{4} [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
Collapse
Affiliation(s)
- Morten H Christensen
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
| | - Henrik Jacobsen
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
| | - Thomas A Maier
- Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Brian M Andersen
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Hamidian MH, Edkins SD, Joo SH, Kostin A, Eisaki H, Uchida S, Lawler MJ, Kim EA, Mackenzie AP, Fujita K, Lee J, Davis JCS. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 2016; 532:343-7. [PMID: 27074504 DOI: 10.1038/nature17411] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/08/2016] [Indexed: 11/09/2022]
Abstract
The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold (6)Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a 'pair density wave' state. Here we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi2Sr2CaCu2O8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors QP ≈ (0.25, 0)2π/a0 and (0, 0.25)2π/a0 in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. This phenomenology is consistent with Ginzburg-Landau theory when a charge density wave with d-symmetry form factor and wavevector QC = QP coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.
Collapse
Affiliation(s)
- M H Hamidian
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S D Edkins
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.,School of Physics and Astronomy, University of St Andrews, Fife KY16 9SS, UK
| | - Sang Hyun Joo
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea.,Center for Correlated Electron Systems, Institute of Basic Science, Seoul 151-742, South Korea
| | - A Kostin
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - H Eisaki
- Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - S Uchida
- Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.,Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0011, Japan
| | - M J Lawler
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.,Department of Physics, Binghamton University, Binghamton, New York 13902-6000, USA
| | - E-A Kim
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - A P Mackenzie
- School of Physics and Astronomy, University of St Andrews, Fife KY16 9SS, UK.,Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - K Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jinho Lee
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea.,Center for Correlated Electron Systems, Institute of Basic Science, Seoul 151-742, South Korea
| | - J C Séamus Davis
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.,School of Physics and Astronomy, University of St Andrews, Fife KY16 9SS, UK.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Jacobs T, Simsek Y, Koval Y, Müller P, Krasnov VM. Sequence of Quantum Phase Transitions in Bi2Sr2CaCu2O(8+δ) Cuprates Revealed by In Situ Electrical Doping of One and the Same Sample. PHYSICAL REVIEW LETTERS 2016; 116:067001. [PMID: 26919010 DOI: 10.1103/physrevlett.116.067001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Our recently discovered electrical doping technique allows a broad-range variation of carrier concentration without changing the chemical composition. We show that it is possible to induce superconductivity in a nondoped insulating sample and to tune it reversibly all the way to an overdoped metallic state. This way, we can investigate the whole doping diagram of one and the same sample. Our study reveals two distinct critical points. The one at the overdoped side is associated with the onset of the pseudogap and with the metal-to-insulator transition in the c-axis transport. The other at optimal doping is associated with the appearance of a "dressed" electron energy. Our study confirms the existence of multiple phase transitions under the superconducting dome in cuprates.
Collapse
Affiliation(s)
- Th Jacobs
- Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Y Simsek
- Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden
- Department of Physics, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Y Koval
- Department of Physics, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - P Müller
- Department of Physics, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - V M Krasnov
- Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden
| |
Collapse
|
25
|
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates. Nat Commun 2016; 7:10378. [PMID: 26785835 PMCID: PMC4735821 DOI: 10.1038/ncomms10378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. This proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra. The emergence of a giant phonon anomaly in the pseudogap phase of underdoped cuprate superconductors has been assumed to be a consequence of instability towards a charge density wave state. Here, the authors present a theory suggesting the anomaly arises due to large superconducting fluctuations.
Collapse
|