1
|
Zhang Y, Hang C, Malomed BA, Huang G. Stable three-dimensional vortex solitons of high topological charge in a Rydberg-dressed Bose-Einstein condensate with spin-orbit coupling. Phys Rev E 2025; 111:024205. [PMID: 40103118 DOI: 10.1103/physreve.111.024205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Stable vortex solitons (VSs) are objects of great interest for fundamental studies and various applications, including particle trapping, microscopy, data encoding, and matter-wave gyroscopes. However, three-dimensional (3D) VSs with high topological charges, supported by self-attractive nonlinearities, are unstable against fragmentation, which eventually leads to internal blowup (supercritical collapse) of the fragments. Here, we propose a scheme for realizing stable 3D VSs with topological charges up to 5 and 6 in the two components of a binary, Rydberg-dressed Bose-Einstein condensate with spin-orbit coupling (SOC). We show that, if the SOC strength exceeds a critical value, the rotational symmetry of the VSs in the transverse plane gets broken, resulting in a separation of the two components. Nevertheless, the VSs with the broken symmetry remain stable. The VS stability domains are identified in the system's parameter space. Moreover, application of torque to the stable VSs sets them in the state of robust gyroscopic precession.
Collapse
Affiliation(s)
- Yanchao Zhang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
| | - Chao Hang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
- New York University at Shanghai, NYU-ECNU Institute of Physics, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| | - Boris A Malomed
- Tel Aviv University, Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, 6997801 Tel Aviv, Israel
- Universidad de Tarapacá, Instituto de Alta Investigación, Casilla 7D, Arica, Chile
| | - Guoxiang Huang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
- New York University at Shanghai, NYU-ECNU Institute of Physics, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Deng H, Li J, Chen Z, Liu Y, Liu D, Jiang C, Kong C, Malomed BA. Semivortex solitons and their excited states in spin-orbit-coupled binary bosonic condensates. Phys Rev E 2024; 109:064201. [PMID: 39021016 DOI: 10.1103/physreve.109.064201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/03/2024] [Indexed: 07/20/2024]
Abstract
It is known that two-dimensional two-component fundamental solitons of the semivortex (SV) type, with vorticities (s_{+},s_{-})=(0,1) in their components, are stable ground states (GSs) in the spin-orbit-coupled (SOC) binary Bose-Einstein condensate with the contact self-attraction acting in both components, in spite of the possibility of the critical collapse in the system. However, excited states (ESs) of the SV solitons, with the vorticity set (s_{+},s_{-})=(S_{+},S_{+}+1) and S_{+}=1,2,3,..., are unstable in the same system. We construct ESs of SV solitons in the SOC system with opposite signs of the self-interaction in the two components. The main finding is stability of the ES-SV solitons, with the extra vorticity (at least) up to S_{+}=6. The threshold value of the norm for the onset of the critical collapse, N_{thr}, in these excited states is higher than the commonly known critical value, N_{c}≈5.85, associated with the single-component Townes solitons, N_{thr} increasing with the growth of S_{+}. A velocity interval for stable motion of the GS-SV solitons is found too. The results suggest a solution for the challenging problem of the creation of stable vortex solitons with high topological charges.
Collapse
Affiliation(s)
- Haiming Deng
- School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, Xiangnan University, Chenzhou 423000, China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | - Jinqing Li
- School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, Xiangnan University, Chenzhou 423000, China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | | | - Yaohui Liu
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | - Dong Liu
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | - Chunzhi Jiang
- School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, Xiangnan University, Chenzhou 423000, China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | - Chao Kong
- School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, Xiangnan University, Chenzhou 423000, China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan University, Chenzhou 423000, China
| | | |
Collapse
|
3
|
Adhikari SK. Quasi-one- and quasi-two-dimensional symbiotic solitons bound by dipolar interaction. Phys Rev E 2024; 109:064206. [PMID: 39020961 DOI: 10.1103/physreve.109.064206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
We study the formation of quasi-one- (quasi-1D) and quasi-two-dimensional (quasi-2D) symbiotic solitons bound by an interspecies dipolar interaction in a binary dipolar Bose-Einstein condensate. These binary solitons have a repulsive intraspecies contact interaction stronger than the intraspecies dipolar interaction, so that they can not be bound in isolation in the absence of an interspecies dipolar interaction. These symbiotic solitons are bound in the presence of an interspecies dipolar interaction and zero interspecies contact interaction. The quasi-1D solitons are free to move along the polarization z direction of the dipolar atoms, whereas the quasi-2D solitons move in the x-z plane. To illustrate these, we consider a ^{164}Er-^{166}Er mixture with scattering lengths a(^{164}Er)=81a_{0} and a(^{166}Er)=68a_{0} and with dipolar lengths a_{dd}(^{164}Er)≈a_{dd}(^{166}Er)≈65a_{0}, where a_{0} is the Bohr radius. In each of the two components a>a_{dd}, which stops the binding of solitons in each component in isolation, whereas a binary quasi-1D or a quasi-2D ^{164}Er-^{166}Er soliton is bound in the presence of an interspecies dipolar interaction. The stationary states were obtained by imaginary-time propagation of the underlying mean-field model; dynamical stability of the solitons was established by real-time propagation over a long period of time.
Collapse
|
4
|
Jain M, Amin MA, Pu H. Integrator for general spin-s Gross-Pitaevskii systems. Phys Rev E 2023; 108:055305. [PMID: 38115448 DOI: 10.1103/physreve.108.055305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
We provide an algorithm, i-SPin 2, for evolving general spin-s Gross-Pitaevskii or nonlinear Schrödinger systems carrying a variety of interactions, where the 2s+1 components of the "spinor" field represent the different spin-multiplicity states. We consider many nonrelativistic interactions up to quartic order in the Schrödinger field (both short and long range, and spin-dependent and spin-independent interactions), including explicit spin-orbit couplings. The algorithm allows for spatially varying external and/or self-generated vector potentials that couple to the spin density of the field. Our work can be used for scenarios ranging from laboratory systems such as spinor Bose-Einstein condensates (BECs), to cosmological or astrophysical systems such as self-interacting bosonic dark matter. As examples, we provide results for two different setups of spin-1 BECs that employ a varying magnetic field and spin-orbit coupling, respectively, and also collisions of spin-1 solitons in dark matter. Our symplectic algorithm is second-order accurate in time, and is extensible to the known higher-order-accurate methods.
Collapse
Affiliation(s)
- Mudit Jain
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Mustafa A Amin
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Han Pu
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
5
|
Zhao Y, Hu HJ, Zhou QQ, Qiu ZC, Xue L, Xu SL, Zhou Q, Malomed BA. Three-dimensional solitons in Rydberg-dressed cold atomic gases with spin-orbit coupling. Sci Rep 2023; 13:18079. [PMID: 37872222 PMCID: PMC10593778 DOI: 10.1038/s41598-023-44745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
We present numerical results for three-dimensional (3D) solitons with symmetries of the semi-vortex (SV) and mixed-mode (MM) types, which can be created in spinor Bose-Einstein condensates of Rydberg atoms under the action of the spin-orbit coupling (SOC). By means of systematic numerical computations, we demonstrate that the interplay of SOC and long-range spherically symmetric Rydberg interactions stabilize the 3D solitons, improving their resistance to collapse. We find how the stability range depends on the strengths of the SOC and Rydberg interactions and the soft-core atomic radius.
Collapse
Affiliation(s)
- Yuan Zhao
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Heng-Jie Hu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qian-Qian Zhou
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Zhang-Cai Qiu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Li Xue
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning, 437100, China
| | - Si-Liu Xu
- Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qin Zhou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, 430200, China
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, P.O.B. 39040, Tel Aviv, Israel
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
| |
Collapse
|
6
|
Liu B, Cai X, Qin X, Jiang X, Xie J, Malomed BA, Li Y. Ring-shaped quantum droplets with hidden vorticity in a radially periodic potential. Phys Rev E 2023; 108:044210. [PMID: 37978625 DOI: 10.1103/physreve.108.044210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
We study the stability and characteristics of two-dimensional circular quantum droplets (QDs) with embedded hidden vorticity (HV), i.e., opposite angular momenta in two components, formed by binary Bose-Einstein condensates (BECs) trapped in a radially periodic potential. The system is modeled by the Gross-Pitaevskii equations with the Lee-Huang-Yang terms, which represent the higher-order self-repulsion induced by quantum fluctuations around the mean-field state, and a potential which is a periodic function of the radial coordinate. Ring-shaped QDs with high winding numbers (WNs) of the HV type, which are trapped in particular circular troughs of the radial potential, are produced by means of the imaginary-time-integration method. Effects of the depth and period of the potential on these QD states are studied. The trapping capacity of individual circular troughs is identified. Stable compound states in the form of nested multiring patterns are constructed too, including ones with WNs of opposite signs. The stably coexisting ring-shaped QDs with different WNs can be used for the design of BEC-based data-storage schemes.
Collapse
Affiliation(s)
- Bin Liu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528000, China
| | - Xiaoyan Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Xizhou Qin
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528000, China
| | - Xunda Jiang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528000, China
| | - Jianing Xie
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528000, China
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
| | - Yongyao Li
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528000, China
| |
Collapse
|
7
|
Zhang Y, Hang C, Huang G. Matter-wave solitons in an array of spin-orbit-coupled Bose-Einstein condensates. Phys Rev E 2023; 108:014208. [PMID: 37583229 DOI: 10.1103/physreve.108.014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
We investigate matter-wave solitons in a binary Bose-Einstein condensate (BEC) with spin-orbit (SO) coupling, loaded in a one-dimensional (1D) deep optical lattice and a three-dimensional anisotropic magnetic trap, which creates an array of elongated sub-BECs with transverse tunneling. We show that the system supports 1D continuous and discrete solitons localized in the longitudinal (along the array) and the transverse (across the array) directions, respectively. In addition, such solitons are always unpolarized in the zero-momentum state but polarized in finite-momentum states. We also show that the system supports stable two-dimensional semidiscrete solitons, including single- and multiple-peaked ones, localized in both the longitudinal and transverse directions. Stability diagrams for single-peaked semidiscrete solitons in different parameter spaces are identified. The results reported here are beneficial not only for understanding the physical property of SO-coupled BECs but also for generating new types of matter-wave solitons.
Collapse
Affiliation(s)
- Yanchao Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chao Hang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- NYU-ECNU Institute of Physics, New York University at Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guoxiang Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- NYU-ECNU Institute of Physics, New York University at Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Zhang AQ, Jiao C, Yu ZF, Wang J, Zhang AX, Xue JK. Stability of trapped Bose-Einstein condensate under a density-dependent gauge field. Phys Rev E 2023; 107:024218. [PMID: 36932477 DOI: 10.1103/physreve.107.024218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics. The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically. When the gauge field is less than the threshold, the system is stable, and the gauge field induces chiral dynamics of the wave packet. When the gauge field is greater than the threshold, the system is unstable, and the ground-state wave packet will be deformed and fragmented. Interestingly, we find that as the gauge field approaches the threshold, strong dipolar and breathing dynamics take place, and strong modes mixing occurs, the instability of the system sets in. In addition, we show that the stability of the system can be well controlled by periodical modulation of the trapping potential. We provide theoretical evidence to understand and control the irregular dynamics associated with chiral superfluid induced by density-dependent gauge field.
Collapse
Affiliation(s)
- An-Qing Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chen Jiao
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zi-Fa Yu
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jie Wang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
9
|
Adhikari SK. Spatial order in a two-dimensional spin-orbit-coupled spin-1/2 condensate: superlattice, multi-ring and stripe formation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:425402. [PMID: 34289454 DOI: 10.1088/1361-648x/ac16ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate the formation of stable spatially-ordered states in auniformand alsotrappedquasi-two-dimensional (quasi-2D) Rashba or Dresselhaus spin-orbit (SO) coupled pseudo spin-1/2 Bose-Einstein condensate using the mean-field Gross-Pitaevskii equation. For weak SO coupling, one can have a circularly-symmetric (0, +1)- or (0, -1)-type multi-ring state with intrinsic vorticity, for Rashba or Dresselhaus SO coupling, respectively, where the numbers in the parentheses denote the net angular momentum projection in the two components, in addition to a circularly-asymmetric degenerate state with zero net angular momentum projection. For intermediate SO couplings, in addition to the above two types, one can also have states with stripe pattern in component densities with no periodic modulation in total density. The stripe state continues to exist for large SO coupling. In addition, a new spatially-periodic state appears in the uniform system: asuperlatticestate, possessing some properties of asupersolid, with a square-lattice pattern in component densities and also in total density. In a trapped system the superlattice state is slightly different with multi-ring pattern in component density and a square-lattice pattern in total density. For an equal mixture of Rashba and Dresselhaus SO couplings, in both uniform and trapped systems, only stripe states are found for all strengths of SO couplings. In a uniform system all these states are quasi-2D solitonic states.
Collapse
Affiliation(s)
- S K Adhikari
- Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, 01.140-070 São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Li GM, Li A, Su SJ, Zhao Y, Huang KY, Zhou GP, Xue L, Xu SL. Vector spatiotemporal solitons in cold atomic gases with linear and nonlinear PT symmetric potentials. OPTICS EXPRESS 2021; 29:14016-14024. [PMID: 33985127 DOI: 10.1364/oe.426056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Realizing vector spatiotemporal solitons that are stable in high dimensions is a long-standing goal in the study of nonlinear optical physics. Here, a scheme is proposed to generate three-dimensional (3D) vector spatiotemporal solitons in a cold atomic system with linear and nonlinear parity-time (PT) potentials by utilizing electromagnetically induced transparency (EIT). We investigate the existence and stability of these vector 3D semilunar solitons (SSs) and vortex solitons (VSs) supported by the linear and nonlinear PT potentials. The results show that these solitons have extremely low generation power and very slow propagation velocity and can stably propagate with constant total energy in this system. The frontal head-on collisions of two vector solitons feature quasi-elastic collisions. The dynamics characteristics of these solitons depend on the linear and nonlinear PT-symmetric potential parameters, in particular, the imaginary part of PT potentials. Our study provides a new route for manipulating high-dimensional nonlinear vector optical signals via the controlled optical linear and nonlinear potentials in cold atomic gases.
Collapse
|
11
|
Zhang YC, Jian Y, Yu ZF, Zhang AX, Xue JK. Stability and quantum escape dynamics of spin-orbit-coupled Bose-Einstein condensates in the shallow trap. Phys Rev E 2020; 102:032220. [PMID: 33076041 DOI: 10.1103/physreve.102.032220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/04/2020] [Indexed: 11/07/2022]
Abstract
The Bose-Einstein condensates in a finite depth potential well provide an ideal platform to study the quantum escape dynamics. In this paper, the ground state, tunneling, and diffusion dynamics of the spin-orbit coupling (SOC) of Bose-Einstein condensates with two pseudospin components in a shallow trap are studied analytically and numerically. The phase transition between the plane-wave phase and zero-momentum phase of the ground state is obtained. Furthermore, the stability of the ground state is discussed, and the stability diagram in the parameter space is provided. The bound state (in which condensates are stably trapped in the potential well), the quasibound state (in which condensates tunnel through the well), and the unstable state (in which diffusion occurs) are revealed. We find that the finite depth potential well has an important effect on the phase transition of the ground state, and, interestingly, SOC can stabilize the system against the diffusion and manipulate the tunneling and diffusion dynamics. In particular, spatial anisotropic tunneling and diffusion dynamics of the two pseudospin components induced by SOC in quasibound and unstable states are observed. We provide an effective model and method to study and control the quantum tunneling and diffusion dynamics.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yue Jian
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zi-Fa Yu
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
12
|
Kartashov YV, Konotop VV. Stable Nonlinear Modes Sustained by Gauge Fields. PHYSICAL REVIEW LETTERS 2020; 125:054101. [PMID: 32794855 DOI: 10.1103/physrevlett.125.054101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the spinor multidimensional nonlinear Schrödinger equation. Focusing on the two-dimensional case, we show that when gauge field can be split in a pure gauge and a nonpure gauge generating effective potential, the roles of these components in soliton dynamics are different: the localization characteristics of emerging states are determined by the curvature, while pure gauge affects the stability of the modes. Respectively the solutions can be exactly represented as the envelopes which may depend on the pure gauge implicitly through the effective potential, and modulating stationary carrier-mode states, which are independent of the curvature. Our central finding is that nonzero curvature can lead to the existence of unusual modes, in particular, enabling stable localized self-trapped fundamental and vortex-carrying states in media with constant repulsive interactions without additional external confining potentials and even in the expulsive external traps.
Collapse
Affiliation(s)
- Yaroslav V Kartashov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Vladimir V Konotop
- Departamento de Física, Faculdade de Ciências, and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Edifício C8, Lisboa 1749-016, Portugal
| |
Collapse
|
13
|
Qin YH, Zhao LC, Ling L. Nondegenerate bound-state solitons in multicomponent Bose-Einstein condensates. Phys Rev E 2019; 100:022212. [PMID: 31574652 DOI: 10.1103/physreve.100.022212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 06/10/2023]
Abstract
We investigate nondegenerate bound-state solitons systematically in multicomponent Bose-Einstein condensates, through developing the Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solitons with nodes correspond to the excited bound states in effective quantum wells, in sharp contrast to the bright solitons and dark solitons reported before (which usually correspond to ground state and free state, respectively). We further demonstrate that bound-state solitons with nodes are induced by incoherent superposition of solitons in different components. Moreover, we reveal that the interactions between these bound-state solitons are usually inelastic, caused by the incoherent interactions between solitons in different components and the coherent interactions between solitons in the same component. Additionally, the detailed spectral stability analysis demonstrates the stability of nondegenerate bound-state solitons. The bound-state solitons can be used to study many different physical problems, such as beating dynamics, spin-orbit coupling effects, quantum fluctuations, and even quantum entanglement states.
Collapse
Affiliation(s)
- Yan-Hong Qin
- School of Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Li-Chen Zhao
- School of Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Liming Ling
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Wan NS, Li YE, Xue JK. Solitons in spin-orbit-coupled spin-2 spinor Bose-Einstein condensates. Phys Rev E 2019; 99:062220. [PMID: 31330691 DOI: 10.1103/physreve.99.062220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/07/2022]
Abstract
We investigate the different types of matter-wave solitons in spin-orbit-coupled spin-2 spinor Bose-Einstein condensates. Using mean-field theory and adopting the multiscale perturbation method, the original five-component Gross-Pitaevskii spin-orbit-coupled spin-2 spinor Bose-Einstein condensate model can be reduced to a single effective nonlinear Schrödinger equation, which allows us to find analytical soliton solutions of this system. In this way, for different regimes of the spin-orbit coupling, Raman coupling, and interatomic interactions, we find approximate bright and dark soliton solutions. Particularly, the type of solitons depends on the dispersion properties of the system. When the lowest-energy band has a single-well structure, we find there only exist positive mass bright or dark solitons due to the dispersion coefficient of effective nonlinear Shrödinger equation always positive. However, when the lowest-energy band has a double-well structure, there will appear positive (negative) mass bright or dark solitons because the sign of the dispersion coefficient can be positive (negative) under different momentum. We employ direct numerical simulation of the original five-component Gross-Pitaevskii equations to confirm the analytical results.
Collapse
Affiliation(s)
- Nian-Sheng Wan
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yu-E Li
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
15
|
Kartashov YV, Zezyulin DA. Stable Multiring and Rotating Solitons in Two-Dimensional Spin-Orbit-Coupled Bose-Einstein Condensates with a Radially Periodic Potential. PHYSICAL REVIEW LETTERS 2019; 122:123201. [PMID: 30978069 DOI: 10.1103/physrevlett.122.123201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
We consider two-dimensional spin-orbit-coupled atomic Bose-Einstein condensate in a radially periodic potential. The system supports different types of stable self-sustained states including radially symmetric vorticity-carrying modes with different topological charges in two spinor components that may have multiring profiles and at the same time remain remarkably stable for repulsive interactions. Solitons of the second type show persistent rotation with constant angular frequency. They can be stable for both repulsive and attractive interatomic interactions. Because of the inequivalence between clockwise and counterclockwise rotation directions introduced by spin-orbit coupling, the properties of such solitons strongly differ for positive and negative rotation frequencies. The collision of solitons located in the same or different rings is accompanied by a change of the rotation frequency that depends on the phase difference between colliding solitons.
Collapse
Affiliation(s)
- Yaroslav V Kartashov
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia
| | | |
Collapse
|
16
|
Exotic complexes in one-dimensional Bose-Einstein condensates with spin-orbit coupling. Sci Rep 2018; 8:3706. [PMID: 29487364 PMCID: PMC5829142 DOI: 10.1038/s41598-018-22008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
By means of the F-expansion method and intensive numerical simulations, the existence of three families of nonlinear matter waves including Jacobi elliptic functions, solitons, and triangular periodic functions, is demonstrated for spin-orbit coupled Bose-Einstein condensates with a linear potential. In addition, several complexes are obtained by taking two distinct solutions of each family or two distinct families. These solutions sustain different types of two-body interactions in the condensate that can be repulsive, attractive, or attractive and repulsive. Whereas the spin-orbit coupling destabilized these nonlinear matter waves, the linear potential leads to a stabilization. The numerical results are in excellent agreement with our analytical findings and it can be expected that the proposed robust solutions should be observable for experimentally relevant conditions.
Collapse
|
17
|
Veretenov NA, Fedorov SV, Rosanov NN. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons. PHYSICAL REVIEW LETTERS 2017; 119:263901. [PMID: 29328709 DOI: 10.1103/physrevlett.119.263901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 05/09/2023]
Abstract
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.
Collapse
Affiliation(s)
- N A Veretenov
- Vavilov State Optical Institute, 199034 St. Petersburg, Russia
- ITMO University, 197101 St. Petersburg, Russia
| | - S V Fedorov
- ITMO University, 197101 St. Petersburg, Russia
| | - N N Rosanov
- Vavilov State Optical Institute, 199034 St. Petersburg, Russia
- ITMO University, 197101 St. Petersburg, Russia
- Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
| |
Collapse
|
18
|
Yu ZF, Xue JK. The phase diagram and stability of trapped D-dimensional spin-orbit coupled Bose-Einstein condensate. Sci Rep 2017; 7:15635. [PMID: 29142281 PMCID: PMC5688179 DOI: 10.1038/s41598-017-15900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/05/2017] [Indexed: 11/08/2022] Open
Abstract
By variational analysis and direct numerical simulation, we study the phase transition and stability of a trapped D-dimensional Bose-Einstein condensate with spin-orbit coupling. The complete phase and stability diagrams of the system are presented in full parameter space, while the collapse dynamics induced by the mean-filed attraction and the mechanism for stabilizing the collapse by spin-orbit coupling are illustrated explicitly. Particularly, a full and deep understanding of the dependence of phase transition and stability mechanism on geometric dimensionality and external trap potential is revealed. It is shown that the spin-orbit coupling can modify the dispersion relations, which can balance the mean-filed attractive interaction and result in a spin polarized or overlapped state to stabilize the collapse, then changes the collapsing threshold dependent on the geometric dimensionality and external trap potential. Moreover, from 2D to 3D system, the mean-field attraction for inducing the collapse is reduced and the collapse speed is enhanced, namely, the collapse can be more easily stabilized in 2D system. That is, the collapse can be manipulated by adjusting the spin-orbit coupling, Raman coupling, geometric dimensionality and the external trap potential, which can provide a possible way for elaborating the collapse dynamics experimentally.
Collapse
Affiliation(s)
- Zi-Fa Yu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Charalampidis EG, Kevrekidis PG, Frantzeskakis DJ, Malomed BA. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients. Phys Rev E 2016; 94:022207. [PMID: 27627298 DOI: 10.1103/physreve.94.022207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 11/07/2022]
Abstract
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
Collapse
Affiliation(s)
- E G Charalampidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 01003-4515, USA
| | - P G Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 01003-4515, USA
| | - D J Frantzeskakis
- Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
| | - B A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel and Laboratory of Nonlinear-Optical Informatics, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
20
|
Sakaguchi H, Sherman EY, Malomed BA. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting. Phys Rev E 2016; 94:032202. [PMID: 27739749 DOI: 10.1103/physreve.94.032202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 06/06/2023]
Abstract
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.
Collapse
Affiliation(s)
- Hidetsugu Sakaguchi
- Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - E Ya Sherman
- Department of Physical Chemistry, University of the Basque Country UPV-EHU, 48940 Bilbao, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Driben R, Konotop VV, Malomed BA, Meier T. Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators. Phys Rev E 2016; 94:012207. [PMID: 27575123 DOI: 10.1103/physreve.94.012207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 06/06/2023]
Abstract
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3+3 harmonic-oscillator p-wave eigenfunctions with orbital and magnetic quantum numbers l=1 and m=1, 0, -1. The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p-wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l=1.
Collapse
Affiliation(s)
- R Driben
- Department of Physics and CeOPP, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - V V Konotop
- Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal
| | - B A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - T Meier
- Department of Physics and CeOPP, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|